Our own Andoni Mourdoukoutas CCNY 2016 Valedictorian

Andoni has been working under the supervision of Dr. Marom Bikson for over 3 years. In that time he has published several papers, presented at national scientific meetings, and won several prestigious national awards including the Goldwater Scholarship (the 3rd from the Bikson lab). Andoni: We are very proud of all you have accomplished and all you will!!! 

valedictorian.png
Neural Engineering
New Paper: Prospects of tDCS for PTSD

Neuromodulation (S Taylor, Section Editor) Current Behavioral Neuroscience Reports pp 1-7

Current Status of Transcranial Direct Current Stimulation in Posttraumatic Stress and Other Anxiety Disorders

Benjamin M. Hampstead , Emily M. Briceño, Nathan Mascaro, Andoni Mourdoukoutas, Marom Bikson

10.1007/s40473-016-0070-9

Full PDF: Hampstead_tDCS_PTSD_Status

Abstract: Several empirically supported treatments have been identified for posttraumatic stress disorder (PTSD), yet a sizable number of patients are either unable to tolerate these approaches or remain symptomatic following treatment. Transcranial direct current stimulation (tDCS) is a well-tolerated method of modulating neuronal excitability that may hold promise as a novel intervention in PTSD and related disorders. The current review summarizes literature on the disrupted neural circuitry in PTSD and discusses the rationale for the commonly targeted prefrontal cortex (PFC) as it relates to PTSD. We then review the few prior (case) studies that have evaluated tDCS in patients with PTSD (1 study) and other anxiety disorders (4 studies). There was considerable variability in both the methods/justification for selecting the targeted brain region(s) and the tDCS montage used, which obscured any clear trends in the data. Finally, we describe the rationale for our ongoing study that specifically targets the lateral temporal cortex as a method of treating the symptoms of hyperarousal and re-experiencing in PTSD. Overall, it is clear that additional work is needed to establish dosing (e.g., intensity and duration of sessions, number of sessions) and optimal treatment targets, as well as to identify synergistic effects with existing treatments.

hemisphere.png
Neural Engineering
New paper: tDCS and Perception of Visual Vertical

Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS)

PLoS ONE 11(3): e0152331. doi:10.1371/journal.pone.0152331 

Free online here

Full PDF: Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS)_journal.pone.0152331

Taiza E. G. Santos-Pontelli 1*, Brunna P. Rimoli 1, Diandra B. Favoretto 1, Suleimy C. Mazin 1, Dennis Q. Truong 2, Joao P. Leite 1, Octavio M. Pontes-Neto 1, Suzanne R. Babyar 3, Michael Reding 3, Marom Bikson 2, Dylan J. Edwards 3

1 Department of Neuroscience and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil, 2 Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, New York, United States of America, 3 Non-invasive Brain Stimulation and Human Motor Control Laboratory, Burke Medical Research Institute, White Plains, New York, United States of America; Neurology Department, Weill Medical College, Cornell University, New York, New York, United States of America

Abstract: Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional conse- quences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the tempo- ral-parietal region could result in both online and offline SVV misperception in healthy sub- jects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the tempo- ral-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-spe- cific current flow patterns were investigated using computational models. SVV was signifi- cantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treat- ment of SVV misperception in neurological patients.

Screen-Shot-2016-04-01-at-1.47.59-PM.png
Neural Engineering
tDCS and SPORTS PERFORMANCE study: Featured in Nature

Update: Our article on sport performance in athletics features in Nature. Link to news feature.

sports.PNG

Complete original paper: pubmed link  Full PDF: tDCS_autonomic_Paper

Br J Sports Med. 2013 Feb 27. [Epub ahead of print]

Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise.

Okano AH, Fontes EB, Montenegro RA, Farinatti PD, Cyrino ES, Li LM, Bikson M, Noakes TD.

BACKGROUND: The temporal and insular cortex (TC, IC) have been associated with autonomic nervous system (ANS) control and the awareness of emotional feelings from the body. Evidence shows that the ANS and rating of perceived exertion (RPE) regulate exercise performance. Non-invasive brain stimulation can modulate the cortical area directly beneath the electrode related to ANS and RPE, but it could also affect subcortical areas by connection within the cortico-cortical neural networks. This study evaluated the effects of transcranial direct current stimulation (tDCS) over the TC on the ANS, RPE and performance during a maximal dynamic exercise.

METHODS: Ten trained cyclists participated in this study (33±9 years; 171.5±5.8 cm; 72.8±9.5 kg; 10-11 training years). After 20-min of receiving either anodal tDCS applied over the left TC (T3) or sham stimulation, subjects completed a maximal incremental cycling exercise test. RPE, heart rate (HR) and R-R intervals (as a measure of ANS function) were recorded continuously throughout the tests. Peak power output (PPO) was recorded at the end of the tests.

RESULTS: With anodal tDCS, PPO improved by ∼4% (anodal tDCS: 313.2±29.9 vs 301.0±19.8 watts: sham tDCS; p=0.043), parasympathetic vagal withdrawal was delayed (anodal tDCS: 147.5±53.3 vs 125.0±35.4 watts: sham tDCS; p=0.041) and HR was reduced at submaximal workloads. RPE also increased more slowly during exercise following anodal tDCS application, but maximal RPE and HR values were not affected by cortical stimulation.

CONCLUSIONS: The findings suggest that non-invasive brain stimulation over the TC modulates the ANS activity and the sensory perception of effort and exercise performance, indicating that the brain plays a crucial role in the exercise performance regulation.

hemisphere 2.PNG
New Paper: Targeting negative symptoms in schizophrenia with tDCS

Schizophr Res. 2015 Aug;166(1-3):362-3. doi: 10.1016/j.schres.2015.05.029.

Targeting negative symptoms in schizophrenia: results from a proof-of-concept trial assessing prefrontal anodic tDCS protocol.

Kurimori M, Shiozawa P, Bikson M, Aboseria M, Cordeiro Q.

Full paper: kurimori2015  Pubmed link

“….In the present study anodic tDCS protocol was found to ameliorate negative symptoms in schizophrenia. The present results need to be taken as hypothesis-driven given the study design. Limitations to this study include its unblinded nature, small sample size, lack of a control group, and short length. Moreover, our results may be overestimated due to intrinsic characteristics such as the placebo effect and Hawthorne effect. However, the current “proof-of-concept” trial is aimed at evaluat- ing preliminary effects of a new experimental tDCS protocol. We under- stand that the trends seen in the completers shall strongly justify a larger double-blind study with better estimation of sample size.”

Neural Engineering
Paper on tDCS, brain metabolites, and fibromyalgia

Arthritis Rheumatol. 2015 Feb;67(2):576-81.

Excitatory and inhibitory brain metabolites as targets of motor cortex transcranial direct current stimulation therapy and predictors of its efficacy in fibromyalgia.

Foerster BR, Nascimento TD, DeBoer M, Bender MA, Rice IC, Truong DQ, Bikson M, Clauw DJ, Zubieta JK, Harris RE, DaSilva AF.

Paper PDF: Foerster_et_al-2015-Arthritis_&_Rheumatology  Journal link here

Abstract: OBJECTIVE: Transcranial direct current stimulation (tDCS) has been shown to improve pain symptoms in fibromyalgia (FM), a central pain syndrome whose underlying mechanisms are not well understood. This study was undertaken to explore the neurochemical action of tDCS in the brain of patients with FM, using proton magnetic resonance spectroscopy (1H-MRS). METHODS: Twelve patients with FM underwent sham tDCS over the left motor cortex (anode placement) and contralateral supraorbital cortex (cathode placement) for 5 consecutive days, followed by a 7-day washout period and then active tDCS for 5 consecutive days. Clinical pain assessment and 1H-MRS testing were performed at baseline, the week following the sham tDCS trial, and the week following the active tDCS trial. RESULTS: Clinical pain scores decreased significantly between the baseline and active tDCS time points (P = 0.04). Levels of glutamate + glutamine (Glx) in the anterior cingulate were significantly lower at the post–active tDCS assessment compared with the post–sham tDCS assessment (P = 0.013), and the decrease in Glx levels in the thalami between these time points approached significance (P = 0.056). From baseline to the post–sham tDCS assessment, levels of N-acetylaspartate (NAA) in the posterior insula increased significantly (P = 0.015). There was a trend toward increased levels of γ-aminobutyric acid (GABA) in the anterior insula after active tDCS, compared with baseline (P = 0.064). Baseline anterior cingulate Glx levels correlated significantly with changes in pain score, both for the time period from baseline to sham tDCS (β1 = 1.31, P < 0.001) and for the time period from baseline to active tDCS (β1= 1.87, P < 0.001). CONCLUSION: The present findings suggest that GABA, Glx, and NAA play an important role in the pathophysiology of FM and its modulation by tDCS.

Neural Engineering
New Review: A technical guide to tDCS

A technical guide to tDCS, and related non-invasive brain stimulation tools

A. J. Woods, A. Antal, M. Bikson, P.S. Boggio, A.R. Brunoni, P. Celnik, L.G. Cohen, D. Fregni, C.S. Herrmann, E.S. Kappenman, H. Knotkova, D. Liebetanz, C. Miniussi, P.C. Miranda, W. Paulus, A. Priori, D. Reato, C. Stagg, N. Wenderoth, M.A. Nitsche.

Clin Neurophysiol. 2016;127(2):1031-48. doi: 10.1016/j.clinph.2015.11.012.

Full paper: A_technical_guide_to_tDCS_Woods_2016

Abstract: Transcranial electrical stimulation (tES), including transcranial direct and alternating current stimulation (tDCS, tACS) are non-invasive brain stimulation techniques increasingly used for modulation of central nervous system excitability in humans. Here we address methodological issues required for tES application. This review covers technical aspects of tES, as well as applications like exploration of brain physiology, modelling approaches, tES in cognitive neurosciences, and interventional approaches. It aims to help the reader to appropriately design and conduct studies involving these brain stimulation techniques, understand limitations and avoid shortcomings, which might hamper the scientific rigor and potential applications in the clinical domain.

Neural Engineering
Special NE seminar: Malcolm Slaney-Understanding and using audio attention

Malcolm Slaney of the Machine Listening Group at Google Research will be discussing the topic of auditory attention. Malcolm is know for his work on automatic speech recognition and auditory perception, among many other things.

When: Friday, January 22nd, at 3pm

WhereASRC Auditorium

Important: please confirm your attendance by RSVP’ing to neuroccny@gmail.com.  RSVP will facilitate your entry into the ASRC building. Feel free to extend invites to relevant parties.

Title: Understanding and using audio attention

Abstract: Understanding auditory attention is key to many tasks. In this talk I would like to summarize several aspects of attention that we have used to better understand how humans use attention in our daily lives.  This work extends from top-down and bottom-up models of attention useful for solving the cocktail party problem, to the use of eye-gaze and face-pose information to better understand speech in human-machine and human-human-machine interactions, to new techniques that use EEG (and other brain signals) to infer the direction of auditory attention. The common thread throughout all this work is the use of implicit signals such as auditory saliency, face pose and eye gaze as part of a speech-processing system. I will show algorithms and results from speech recognition, speech understanding, addressee detection, and selecting the desired speech from a complicated auditory environment.  This talk will describe work that I did while at Microsoft Research, and efforts at the Telluride Neuromorphic Cognition Engineering Workshop that were partially supported by Google.

Biography: BSEE, MSEE, and Ph.D., Purdue University. Dr. Malcolm Slaney is a research scientist in the Machine Hearing Group at Google Research. He is a Consulting Professor at Stanford CCRMA, where he has led the Hearing Seminar for more than 20 years, and an Affiliate Faculty in the Electrical Engineering Department at the University of Washington. He is a (former) Associate Editor of IEEE Transactions on Audio, Speech and Signal Processing and IEEE Multimedia Magazine. He has given successful tutorials at ICASSP 1996 and 2009 on “Applications of Psychoacoustics to Signal Processing,” on “Multimedia Information Retrieval” at SIGIR and ICASSP, and “Web-Scale Multimedia Data” at ACM Multimedia 2010. He is a coauthor, with A. C. Kak, of the IEEE book Principles of “Computerized Tomographic Imaging”. This book was republished by SIAM in their “Classics in Applied Mathematics” Series. He is coeditor, with Steven Greenberg, of the book “Computational Models of Auditory Function.” Before joining Microsoft Research, Dr. Slaney has worked at Bell Laboratory, Schlumberger Palo Alto Research, Apple Computer, Interval Research, IBM’s Almaden Research Center, Yahoo! Research, and Microsoft Research. For many years, he has lead the auditory group at the Telluride Neuromorphic (Cognition) Workshop. Dr. Slaney’s recent work is on understanding audio perception and decoding auditory attention from brain signals.  He is a Fellow of the IEEE.

Neural Engineering
Dr. Bikson interview on “TechKnow” available

Watch it here: VIDEO

This episode of TechKnow (Original Air Date: September 27, 2014) explores the applications of “hacking the brain.” For patients suffering from a variety of brain injuries and diseases—from depression to cerebral palsy— there is a sure of interest in an technique called transcranial Direct Current Stimulation (tDCS). Dr. Marom Bikson it interviewed as an expert on tDCS technology and its use at home. All features Soterix Medical technology used for neurorehabilitation.

Neural Engineering
New Paper: Home Use of tDCS for Multiple Sclerosis

A Protocol for the Use of Remotely-Supervised Transcranial Direct Current Stimulation (tDCS) in Multiple Sclerosis (MS)

Margaret Kasschau 1,2, Kathleen Sherman1,2, Lamia Haider 2, Ariana Frontario 1,2, Michael Shaw1,2, Abhishek Datta 3, Marom Bikson 4, Leigh Charvet1,2

1 Multiple Sclerosis Comprehensive Care Center, Department of Neurology, NYU Langone Medical Center, 2 Department of Neurology, Stony Brook Medicine, 3 Soterix Medical, Inc, 4 Department of Biomedical Engineering, The City College of New York

Watch the video here

Soterix Medical Mini-CT device used here 

Neural Engineering
Special NE Seminar: José del R. Millán, Brain-Machine Interfaces: Dec 18

Neural Engineering Journal Club/Speaker Friday (Dec 18th) at 1 PM. Location is the new CCNY building, 3rd floor conference room Directions here

Brain-Machine Interfaces: The Perception-Action Closed Loop

Dr. José del R. Millán

http://actu.epfl.ch/news/neuroprotheses-l-esprit-aux-commandes/

Future neuroprosthetics will be tightly coupled with the user in such a way that the resulting system can replace and restore impaired upper limb functions because controlled by the same neural signals than their natural counterparts. However, robust and natural interaction of subjects with sophisticated prostheses over long periods of time remains a major challenge. To tackle this challenge we can get inspiration from natural motor control, where goal-directed behavior is dynamically modulated by perceptual feedback resulting from executed actions.

Current brain-computer interfaces (BCI) partly emulate human motor control as they decode cortical correlates of movement parameters –from onset of a movement to directions to instantaneous velocity– in order to generate the sequence of movements for the neuroprosthesis. A closer look, though, shows that motor control results from the combined activity of the cerebral cortex, subcortical areas and spinal cord. This hierarchical organization supports the hypothesis that complex behaviours can be controlled using the low-dimensional output of a BCI in conjunction with intelligent devices in charge to perform low-level commands.

A further component that will facilitate intuitive and natural control of motor neuroprosthetics is the incorporation of rich multimodal feedback and neural correlates of perceptual processes resulting from this feedback. As in natural motor control, these sources of information can dynamically modulate interaction.

Bio: José del R. Millán is the Defitech Professor at the Ecole Polytechnique Fédérale de Lausanne (EPFL) where he explores the use of brain signals for multimodal interaction and, in particular, the development of non-invasive brain-controlled robots and neuroprostheses. In this multidisciplinary research effort, Dr. Millán is bringing together his pioneering work on the two fields of brain-machine interfaces and adaptive intelligent robotics. He received his Ph.D. in computer science from the Univ. Politècnica de Catalunya (Barcelona, Spain) in 1992. His research on brain-machine interfaces was nominated finalist of the European Descartes Prize 2001 and he has been named Research Leader 2004 by the journal Scientific American for his work on brain-controlled robots. He is the recipient of the IEEE-SMC Nobert Wiener Award 2011 for his seminal and pioneering contributions to non-invasive brain-machine interfaces. Dr. Millán has coordinated a number of European projects on brain-machine interfaces.

Neural Engineering