Special NE Seminar: Stephanie R. Jones, Dec 18

Fall 2013 Seminar Series Department of Biomedical Engineering

Wednesday, December 18 @ 3 PM in Steinman Hall ST-402

Human Thalamocortical Dynamics: From Mechanisms to Meaning Via Computational Neural Modeling

Stephanie R. Jones, Ph.D.

Assistant Research Professor Department of Neuroscience Brown University

Low frequency neocortical rhythms are among the most prominent activity measured in human brain imaging signals such as electro- and magneto- encephalography (EEG/MEG). Elucidating the role that these dynamics play in perception, cognition and action is a key challenge of modern neuroscience. We have recently combined human brain imaging and computational neural modeling to explore the functional relevance and mechanistic underpinnings of rhythms in primary somatosensory cortex, containing Alpha (7-14Hz) and Beta (15-29Hz) components. In this talk, I will review our findings showing this rhythm impacts tactile detection, changes with healthy aging and practice, and is modulated with attention. Constrained by the human imaging data, our biophysically principled computational modeling work has led to a novel prediction on the origin of this rhythm predicting that it emerges from the combination of two stochastic ~10 Hz thalamic drives to the granular/infragranular and supragranular cortical layers. Relative Alpha/Beta expression depends on the strength and delay between the thalamic drives. This model is able to accurately reproduce numerous key features of the human rhythm and proposes a specific mechanistic link between the Beta component of the rhythm and sensory perception. Further, initial electrophysiological recordings in rodents support out hypotheses and suggest a role for pallidal thalamus in coordinating Beta rhythmicity, with relevance to understanding disrupted Beta in Parkinson’s Disease.

Wednesday, December 18 @ 3 PM in Steinman ST-402

Neural Engineering