Temperature Increases by High-Rate Spinal Cord Stimulation

Looking for mechanisms of action for kHz therapies

Marom Bikson, PhD
Professor of Biomedical Engineering
The City College of New York. New York, NY, USA

NANS. 1/13/2018
Session: Spinal Cord Stimulation: Basic Science
What is high-rate stimulation and why does it require “new” mechanisms?

• Emerging neuromodulation technologies apply stimulation at high-rates (1-10 kHz) that are higher than conventional techniques (~100 Hz)

• High rate stimulation also means short pulse durations (e.g. at 10 kHz: 40 µS)

• Because of the low-pass properties of neuron membranes, high-rate stimulation is “not effective”

• **Amount of heat deposited in tissue can increase at high-rate as duty cycle increases** (“pulse compression”)

![Graph showing pulse duration and frequency](image-url)
Temperature mapping around SCS lead in phantom

- Amount of heat deposited in tissue independent of sinusoidal frequency, sensitive to environment
Temperature increase tracks RMS. Therefore: Increases at high-rates compared to conventional waveforms.
SCS Bio-Heat Model architecture

- 8 compartment types (CAD), plus 2 physical SCS lead
- Each compartment: electrical conductivity and thermal conductivity
- Some compartments with blood perfusion and matched metabolism
- FEM: ~5m elements, adaptive mesh
- Steady state solutions
Current and heat model

- Distinct E-fields and Temperature changes in tissue predicted
SCS temp ruse predictions: Sensitivity to parameters

- >600 model parameter permutations
- The spinal column in an enclosed environment wrapped in insulator
- With SCS a chronic source of heat addition
Temperature Increases by High-Rate Spinal Cord Stimulation

• High-Rate (kHz) spinal cord stimulation (SCS) deposits significantly more power in tissue compared to conventional SCS frequencies, reflecting increased duty cycle ("pulse compression")

• An experimentally verified bio-heat model shows SCS waveform power determines (RMS) joule tissue heating and predicts temperature increases

• ~0.5 °C during clinical relevant High-Rate (kHz) parameters

• Did not model metabolic or other dynamic tissue response to SCS

• Does not exclude other mechanisms but would be adjunct to them (e.g. temperature should not be ignored in any case)

• Tissue heating by kHZ-SCS may impact short and long-term outcomes
Collaborators:

Lucas Parra, Jacek Dmochowski, Asif Rahman, Niranjan Khadka, Mark Jackson, Dennis Truong, Belen Lafon, Gregory Kronberg, Devin Adair, Nigel Gebodh, Zeinab Esmaeilpour, Thomas Radman

Felipe Fregni, Ziv Peremen, Amir Geva, Leigh Charvet, John Jefferys, Hanoch Kaphzan

Tianhe Zhang, Brad Hershey, Rosana Esteller, Wendy Gu

Support:
NIH (NIMH, NINDS, NCI, NIBIB) – BRAIN initiative, NSF, Epilepsy Foundation, Wallace Coulter Foundation, DoD (USAF, AFOSR), Boston Scientific, Soterix Medical

Slides and References at NeuralEngr.com