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Bio-Heat Model of Kilohertz-Frequency Deep
Brain Stimulation Increases Brain Tissue
Temperature
Niranjan Khadka, PhD Candidate* ; Irene E. Harmsen, MD/PhD Candidate†;
Andres M. Lozano, MD, PhD†; Marom Bikson, PhD*

Objectives: Early clinical trials suggest that deep brain stimulation at kilohertz frequencies (10 kHz-DBS) may be effective in
improving motor symptoms in patients with movement disorders. The 10 kHz-DBS can deliver significantly more power in tis-
sue compared to conventional frequency DBS, reflecting increased pulse compression (duty cycle). We hypothesize that
10 kHz-DBS modulates neuronal function through moderate local tissue heating, analogous to kilohertz spinal cord stimulation
(10 kHz-SCS). To establish the role of tissue heating in 10 kHz-DBS (30 μs, 10 kHz, at intensities of 3-7 mApeak), a decisive first
step is to characterize the range of temperature changes during clinical kHz-DBS protocols.

Materials and Methods: We developed a high-resolution magnetic resonance imaging-derived DBS model incorporating
joule-heat coupled bio-heat multi-physics to establish the role of tissue heating. Volume of tissue activated (VTA) under
assumptions of activating function (for 130 Hz) or heating (for 10 kHz) based neuromodulation are contrasted.

Results: DBS waveform power (waveform RMS) determined joule heating at the deep brain tissues. Peak heating was supra-
linearly dependent on stimulation RMS. The 10 kHz-DBS stimulation with 2.3 to 5.4 mARMS (corresponding to 3 to 7 mApeak)
produced 0.10 to 1.38�C heating at the subthalamic nucleus (STN) target under standard tissue parameters. Maximum temper-
ature increases were predicted inside the electrode encapsulation layer (enCAP) with 2.3 to 5.4 mARMS producing 0.13 to
1.87�C under standard tissue parameters. Tissue parameter analysis predicted STN heating was especially sensitive (ranging
from 0.44 to 1.35�C at 3.8 mARMS) to decreasing enCAP electrical conductivity and decreasing STN thermal conductivity.

Conclusions: Subject to validation with in vivo measurements, neuromodulation through a heating mechanism of action by
10 kHz-DBS can indicate novel therapeutic pathways and strategies for dose optimization.
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INTRODUCTION

In the first study examining deep brain stimulation (DBS) at
10 kHz frequencies (10 kHz-DBS; also called ultra-high frequency
DBS), we reported that acute 10 kHz-DBS appears safe and may
be effective in improving motor symptoms in patients with move-
ment disorders (1). Furthermore, 10 kHz-DBS stimulation may
have the potential to reduce stimulation-induced adverse effects,
such as transient paresthesia and impaired speech, which are
often encountered with DBS at conventional frequencies (2–4).
Selecting the optimal stimulation frequency for DBS can be chal-
lenging. Perceived loss of DBS efficacy at low kHz (<5 kHz) derives
from historical findings in limited parameter space (e.g., voltage-
controlled, specific duty cycle) (5), which was supported by
models of conventional mechanisms of action (6). Another factor
that encourages the use of lower DBS frequencies is battery life
(7); we note that increased power consumption is delivered into
the electrode and subsequently into the surrounding deep brain
tissue (8).

1

Marom Bikson, PhD, Department of Biomedical Engineering, The City College
of New York, 85 Saint Nicholas Terrace, New York, NY 10031, USA.
Email: bikson@ccny.cuny.edu,
Niranjan Khadka, PhD Candidate Department of Biomedical Engineering, The
City College of New York, 85 Saint Nicholas Terrace, New York, NY 10031, USA.
Email: nkhadka@ccny.cuny.edu

* Department of Biomedical Engineering, The City College of New York,
New York, NY, USA; and

† Division of Neurosurgery, Department of Surgery, Toronto Western Hospital,
University of Toronto, Toronto, ON, Canada

Source(s) of Financial Support: This study was partially funded by grants o MB
from NIH (NIH-NIMH 1R01MH111896, NIH-NINDS 1R01NS101362, NIH-NCI
U54CA137788/ U54CA132378, R03 NS054783) New York State Department of
Health (NYS DOH, DOH01-C31291GG), and cycle 50 PSC-CUNY.

For more information on author guidelines, an explanation of our peer review
process, and conflict of interest informed consent policies, please go to http://
www.wiley.com/WileyCDA/Section/id-301854.html

Neuromodulation 2020; ••: ••–••© 2020 International Neuromodulation Societywww.neuromodulationjournal.com

https://orcid.org/0000-0002-4930-5214
mailto:bikson@ccny.cuny.edu
mailto:nkhadka@ccny.cuny.edu
http://www.wiley.com/WileyCDA/Section/id-301854.html
http://www.wiley.com/WileyCDA/Section/id-301854.html


The emergence of spinal cord stimulation (SCS) at 10 kHz
(9–13) has encouraged the exploration of novel neuromodulation
mechanisms, including our hypothesis of tissue warming, based
on the relatively high-power nature of clinical 10 kHz waveforms
(14). Since heating of deep brain tissue will impact a myriad of
neuronal functions linked to clinical efficacy (see Discussion), a
pivotal step to establish the role of moderate local heating in
10 kHz-DBS is predicting the degree of temperature increases. To
this end, we expanded on our earlier phantom-verified bio-heat
model of conventional rate DBS (15,16), incorporating detailed
MRI-derived representation of inhomogeneous local tissues, and
emulating clinical 10 kHz-DBS protocols.

METHODS
Bio-Heat DBS Model Construction and Solution Method
High-resolution magnetic resonance imaging (MRI) scans of stan-

dard human head (unsampled to 0.18 mm) were segmented
(Simpleware, Synopsys Inc., CA, USA) into the following tissue masks:
skin; skull; CSF; air; gray-matter; white-matter; cingulate gyrus; basal
ganglia; corpus callosum; thalamus; subthalamic nucleus (STN); for-
nix, nucleus accumbens; hippocampus; amygdala; midbrain; mam-
millary bodies; pons; medulla oblongata; and insula. Computer-
aided design (CAD) model of a clinical DBS lead (Medtronic 3387;
4 contacts (0, 1, 2, and 3) Pt/Ir DBS lead, contact length: 1.5 mm,
inter-contact distance: 1.5 mm, diameter: 1.27 mm) was modeled in
SolidWorks (Dassault Systemes Corp., MA, USA) and imported into
the head model. A 0.5 mm thick encapsulation layer around the
DBS lead with standard assigned conductivity (0.13 S/m) matched
the clinical impedance values (~1 kΩ) (17). The lead penetrated
from the top of the skull at ~20 mm from the midline to the STN tar-
get at ~12 mm from the midline. Approximately, 7 mm of the STN
was contacted around the lead: contact 0 (deepest contact) was at
the ventral border of the STN, contacts 1 and 2 were inside the STN,
and contact 3 was at the dorsal border of the STN (Fig. 1). The volu-
metric conductor model was then meshed using a voxel-based
meshing algorithm, and an adaptive tetrahedral mesh of the head
was generated following multiple mesh densities refinements
(within in 1% error in voltage and current density at the STN).
The stimulation (Laplace equation for electrostatics [r(σ r V) = 0

where V is potential and σ is conductivity]) coupled Pennes’ bio-
heat transfer equation (Eqn. (1)) including joule heating, meta-
bolic heat generation rate (Qmet), and blood perfusion rate (ωb) in
the brain tissues was solved.

ρCprT =r: κrTð Þ−ρbCbωb T−Tbð Þ+Qmet + σ rV2
�
�

�
� ð1Þ

where ρ, Cp, T, σ, and κ represent tissue density, specific heat,
temperature, electrical conductivity, and thermal conductivity
respectively.
Blood density (ρb), specific heat (Cb), and temperature (Tb) were

assumed constant in all vascularized brain tissues with
corresponding values as 1045 kg/m3, 3600 J/(kg. K), and 36.7�C,
respectively. Tissue specific perfusion rate (ωb) ranged from
0.00063 to 0.0228 s−1 (18,19). Prior to the application of 10 kHz-
DBS, the Q met required to balance the initial brain temperature
was calculated using Eqn. (2) (20,21):

Qmet = ρbCbωb T−Tbð Þ ð2Þ

where Tb and T are initial blood and brain temperature.

The calculated Qmet values from Eqn. (2) for the corresponding
ωb values of the brain tissues were: gray matter (ωb, 0.018 s−1;
Qmet, 15540 Wm−3); white matter, corpus callosum, fornix, mam-
millary bodies (ωb, 0.008 s−1; Qmet, 4320 Wm−3); hippocampus
(ωb, 0.00063 s−1; Qmet, 15540 Wm−3); midbrain (ωb, 0.028 s−1;
Qmet, 11370 Wm−3); basal ganglia, thalamus, amygdala, cingulate,
nucleus accumbens (ωb, 0.02282 s−1; Qmet, 15540 Wm−3); and STN
(ωb, 0.02038 s−1; Qmet, 13930 Wm−3). Since CSF is avascular and
enCAP is predominantly scar tissues, 0 values were assigned for
Qmet, and ωb were assigned. The balanced Qmet values approxi-
mated prior experimental measurements (18,19,22).
Thermo-electric properties (σ, κ) of the biological tissues

were based on the following aggregate literature values (23,24):
CSF (1.65 S/m, 0.57 W/[m.K]); gray matter, STN, thalamus,
amygdala, basal ganglia, nucleus accumbens, and cingulate gyrus
(0.276 S/m, 0.55 W/[m.K]); midbrain (0.126 S/m, 0.51 W/[m.K]);
white matter, mammillary bodies, and fornix (0.126 S/m, 0.48 W/
[m.K]); hippocampus (0.126 S/m, 0.55 W/[m.K]); corpus callosum
(0.060 S/m, 0.48 W/[m.K]; and enCAP (0.13 S/m, 0.47 W/[m.K]).
Electrical and thermal conductivities of the DBS contacts and insu-
lating bands between contacts were (4E6 S/m, 31 W/[m.K]) and
(0.0002 S/m, 0.026 W/[m.K]), respectively (25). In some simulations,
the “standard” tissue conductivity parameters of enCAP and STN
were manipulated by either doubling or halving.
Static RMS values were applied (Eqn. (3)) for tested clinical kHz-

DBS intensities (3-7 mApeak at 30 μs and 10 kHz), and this
approach was supported by prior phantom verification for con-
ventional DBS (16) and kHz-SCS (26,27).

IRMS = IPeak
ffiffiffiffiffiffi

t*f
p

= IPeak
ffiffiffiffi

D
p

ð3Þ

where IRMS is the corresponding RMS value of peak stimulation
intensity (Ipeak), t is the combined (anodic and cathodic phase)
pulse width, f is the frequency, and D is the duty cycle.
Unless otherwise stated, contact 2 (C2) was energized in a

monopolar electrode configuration as tested clinically (1). An
inward normal current density (Jnorm, RMS) was applied to the elec-
trode with the bottom surface of the model grounded. For bipolar
electrode configuration, contact 2 (C2) was energized (anode),
while contact 1 (C1) was grounded (cathode). Remaining outer
boundaries of the head were electrically insulated. The tempera-
ture of the outer boundaries of the model was set to core body
temperature (37�C) with no convection across outer head bound-
aries (28). The bio-heat 10 kHz-DBS model was then solved under
the steady-state assumption and the corresponding temperature
increases and field intensities were predicted. Temperature differ-
ence (ΔT) was calculated by subtracting tissue temperature
increase by stimulation (joule heat) from tissue temperature
increase without stimulation.

Volume of Tissue Activated and Volume of Tissue Heated
An activating function-based approach (second derivative of the

electric potential) was implemented to estimate the volume of tissue
activation (VTA) for conventional rate (130 Hz) DBS (25,29–31). Specif-
ically, the divergence of the gradient of the electric potential (r2Ve)
(generalization of the second derivative of the electric potential in
3D) was used to approximate the VTA (25,31–34). Activation thresh-
old levels for different axon diameters (0.36 V/mm2 corresponding to
2.5 μm or 0.82 V/mm2 corresponding to 5 μm) at conventional rate
DBS were implemented to define the VTA (32). For volume of tissue
heated (VTH) at 10 kHz-DBS, a ΔT threshold of 0.1�C or 0.5�C was

2

www.neuromodulationjournal.com © 2020 International Neuromodulation Society Neuromodulation 2020; ••: ••–••

KHADKA ET AL.



considered. Both VTA and VTH were determined at 3, 5, and 7 mA
peak with monopolar and bipolar stimulation (Fig. 3).

RESULTS

We developed an MRI-derived finite element method (FEM) bio-
heat computational model of 10 kHz-DBS, with tissue specific elec-
trical and thermal (passive and blood flow) properties (Fig. 1). For
each simulation, RMS current intensities that corresponded to clini-
cally tested peak current intensities were applied to the model.

Predicted peak temperature (ΔT) in the encapsulation layer (enCAP)
and STN increased supralinearly as a function of stimulation inten-
sity (standard tissue parameters, Fig. 2), reasonably fit by a power
law (14). Under standard tissue parameters, monopolar kHz-DBS at
2.3 mARMS (3 mApeak) produces 0.13�C temperature rise in the
enCAP and 0.10�C at the STN. At 3.8 mARMS (5 mApeak), tempera-
ture increases by 0.83�C in the enCAP and 0.62�C at the STN.
Finally, at 5.4 mARMS (7 mAp), the temperature increases by 1.87�C
in the enCAP and 1.38�C at the STN.
For 10 kHz monopolar DBS with 3.8 mARMS (5 mAp) intensity,

we considered the sensitivity of heating to model tissue

3

Figure 1 FEM bio-heat model predicts temperature increases during kHz-DBS. (A1) A high-resolution human head model with segmented brain tissues and a
DBS lead. For the illustration purpose, only STN (purple) and thalamus (green) are shown. (A2) Inset details model anatomy, showing the STN (1), thalamus (2),
DBS lead (3) at the STN target, and an encapsulation layer (4). (A3) Clinical DBS lead (Medtronic DBS 3387) with contact C2 energized in a monopolar electrode
configuration. (A4) Clinical DBS waveform at 10 kHz with 30 μs pulse width per phase, resulting in a 5.48 Pulse Compression Factor (PCF) with 60% duty (see Ref
(14) for details). Predicted temperature increases with heat flux streamlines (A5) and electric field distribution with current streamlines (A6) across deep brain tis-
sues at 5 mApeak (3.8 mARMS). [Color figure can be viewed at wileyonlinelibrary.com]
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parameters, specifically doubling or halving the electrical and/or
thermal conductivities of either the STN or enCAP (Table 1).
Decreasing the electrical or thermal conductivity of either STN or
enCAP always increased heating of both STN and enCAP. Heating
of both the STN and enCAP was the most sensitive to reducing
enCAP electrical conductivity (enCAP; σ/2, κ), namely heating the
10 kHz-DBS increased the most with reducing enCAP conductivity
compared to any other tissue parameter tested. STN heating was
next more sensitive to reducing STN thermal conductivity (STN; σ,
κ/2) while enCAP heating was next more sensitivity to reducing
enCAP thermal conductivity (enCAP σ, κ/2). Maximum tempera-
ture rises in both STN (1.35�C) and enCAP (2.53�C) were predicted
for enCAP σ/2, κ/2. Minimal temperature rises in both STN
(0.02�C) and enCAP (0.10�C) were predicted for STN 2σ, 2κ. In any
combination tested, the ΔT was always higher in enCAP com-
pared to the STN, except the (2σ, 2κ) condition where heating in
the STN was slightly greater than enCAP.

Activation thresholds corresponding to either 2.5 μm or 5 μm
axon diameter stimulation at conventional rate DBS (130 Hz)
defined the VTA. VTH thresholds of ΔT 0.1�C and 0.5�C were
applied for 10 kHz-DBS. As a first approximation, under the
assumptions simulated here, the volumes of VTA and VTH are
comparable for the same dose. This may suggest that stimulation
and heating have some additive effect in neural activation
(neuromodulation). For a given current intensity and VTA/VTH
threshold, both VTA and VTH roughly doubled for bipolar
vs. monopolar montages. Both VTA and VTH increased supra-
linearly with stimulation intensities (3, 5, and 7 mA peak) and
both bipolar and monopolar electrode configurations. For 7 mA
(peak) bipolar and monopolar electrode configuration, the VTA
and VTH spread beyond the STN. With monopolar 130 Hz DBS,
the VTA were 14.15, 31.63, and 54.54 mm3 at 0.36 V/mm2 activa-
tion threshold, and 2.15, 5.83, and 10.81 mm3 at 0.82 V/mm2 acti-
vation threshold, for 3, 5, and 7 mA, respectively. The VTA for
bipolar 130 Hz DBS at 3, 5, and 7 mA peak intensities were 28.51,
58.21, and 90.94 mm3 at 0.36 V/mm2 threshold, and 4.53, 12.33,
22.28 mm3 at 0.82 V/mm2 threshold. When thresholding at 0.1�C,
the VTH for monopolar 10 kHz DBS were 2.61, 39.29, and
135.19 mm3 and at a threshold 0.5�C, the VTH were 0, 5.34,
23.55 mm3 for 3, 5, and 7 mA peak, respectively. For a bipolar
10 kHz DBS, the VTH were 9.69, 135.66, and 298.23 mm3 at 0.1�C
threshold, and 0, 20.62, and 82.99 mm3 at 0.5�C threshold for 3, 5,
and 7 mA peak, respectively (Fig. 3).

DISCUSSION

Our initial clinical findings on kHz-DBS are of interest because
they open up a new therapeutic stimulation parameter space for
future study and development (1). A heating mechanism of action
(MoA) augments such considerations. For example, since heating
depends only (and supralinearly) on waveform RMS independent
of other parameters, optimal electrode placement and lead resis-
tance may differ following heating vs. conventional MoA.
The biophysics of heating are analogous experimentally verified

prior simulations of conventional rate DBS (15,16) and kHz SCS
(14,26,27), however comparisons highlight the importance of
stimulation dose (electrodes and waveform) as well as tissue anat-
omy and parameters. Compared to monopolar stimulation, ener-
gizing an adjacent contact in a bipolar electrode configuration
may further increase temperature (15). This is compounded by

4

Figure 2 Stimulation intensity (RMS) vs. temperature increases at encapsula-
tion (enCAP) and STN. An MRI-derived FEM model of kHz-DBS predicts ΔT
increases supralinearly (β > 1) with kHz-DBS RMS intensities (14). Results
were fit according to a power law. [Color figure can be viewed at
wileyonlinelibrary.com]

Table 1. Conductivity Sensitivities Analysis at 3.8 mARMS (5 mAp) of the enCAP and STN.

enCAP conductivity sensitivities STN conductivity sensitivities

Conductivities ΔT (�C) Resistance (Ω) ΔT (�C) Resistance (Ω)
enCAP STN enCAP STN

(σ, κ) 0.83 0.62 747 0.83 0.62 747
(σ, κ/2) 1.22 0.66 747 1.18 1.00 747
(σ, 2κ) 0.60 0.55 747 0.61 0.36 747
(2σ, κ) 0.36 0.28 520 0.77 0.55 660
(2σ, κ/2) 0.56 0.30 520 1.09 0.91 660
(2σ, 2κ) 0.23 0.24 520 0.10 0.02 660
(σ/2, κ) 1.77 1.27 1175 0.95 0.72 885
(σ/2, κ/2) 2.53 1.35 1175 1.34 1.15 885
(σ/2, 2κ) 1.31 1.14 1175 0.70 0.44 885

Properties of the enCAP (left) or STN (right) were changed independently with resulting heating (ΔT) of both enCAP and STN reported. Tissue electrical
conductivity (σ) and/or thermal conductivity (κ) were doubled or halved. Total lead resistance (Ω) for each condition is also reported.
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reduced inter-electrode distances (e.g., Medtronic 3389 vs. 3387
lead designs) (15). In kHz-SCS, the highly resistive epidural space
plays a central role in temperature increases both at the lead and
at the spinal cord (14). Here, the encapsulation layer plays a simi-
lar role in kHz-DBS (Table 1), despite the difference in anatomy in
both kHz-SCS and kHz-SCS cases, a high resistive tissue at the
electrode surface increases joule heat deposition, which is then
conducted to more distant tissue (35).
Notably, while increasing tissue resistivity increases heating

for current-controlled stimulation, increasing tissue resistivity
decreases heating for voltage-controlled stimulation (15). As
such, the enCAP may increase heating under current controlled

while decreases heating under voltage controlled stimulation.
All these device and tissue parameters interact; for example,
voltage-controlled DBS at conventional rates with low imped-
ance (minimal encapsulation layer) may also produce significant
heating (15,16). However, by virtue of a higher pulse compres-
sion factor (PCF (14)), kHz-DBS can achieve higher temperature.
The FDA guidelines for MRI-safety allow less than 2�C over 1 hour
of exposure at 1.5 T and 3.0 T frequencies (36) with MRI compat-
ible system resulting in 0.3 to 3.6� C (37,38). Functional tissue
ablation specifically using DBS leads involves RMS intensities of
19 mA or more, produced a peak heating of ~ 69.52�C per our
quadratic standard model. Generally, RF-ablation of deep brain

5

Figure 3 Activating function-based VTA at conventional rate DBS (130 Hz at 60 μs), and VTH at 10 kHz-DBS with monopolar or bipolar electrode configuration at
3, 5, and 7 mA peak with different thresholds. VTA and VTH both increase supralinearly with stimulation intensities and expand twice with bipolar montage
vs. monopolar montages. [Color figure can be viewed at wileyonlinelibrary.com]
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aims for 42 to 49�C, although interestingly a transient tempera-
ture increases to 45�C can produce reversible functional lesions
(39). Animal studies indicate reversible functional lesioning, for
short exposures, at temperatures >46�C (40).
The precise degree of heating during kHz-DBS will depend on

lead design, electrode selection, waveform (stimulation RMS), and
passive and active tissue properties (Table 1 and Fig. 3). Neverthe-
less, the DBS bioheat models developed here support predicting
and optimizing heating across DBS approaches. This can be
informed and contrasted to models of conventional-rate
(e.g. 130 Hz) DBS. In general, for both VTA and VTH, one can con-
sider the brain area of modulation (perimeter of volume maps) and
the nature of neuromodulation within the volume (threshold used
for given volume map). For VTA, this analysis addresses fiber activa-
tion of various types (predicted by activating function threshold),
whereas for VTH, this analysis will depend on yet-unspecified neu-
rophysiological process (predicted by temperature threshold). Both
VTA and VTH increase supralinearly with stimulation intensities
(Fig. 3 (41)) and expand ~2x with bipolar vs. monopolar montages
(Fig. 3 (42,43)). Increasing the tissue resistivities (e.g., enCAP or STN
resistivities) increase both VTA and VTH under current-controlled
stimulation, while decreasing both VTA and VTA under voltage-
controlled stimulation (data not shown (44)). Depending on dose,
either VTH or VTA may expand beyond the (targeted) STN, with
implications for efficacy or the therapeutic window (Fig. 3 (45–48)).
While the specific mechanisms of heating-based neuromodulation

(at different VTH temperature thresholds) remain to be shown, the
principle of heating-based neuromodulation is established. All brain
tissues are sensitive to temperature variations. Neuronal excitability,
neurotransmitter function and plasticity, underlying metabolic func-
tions, and connectivity and synchronization are all modulated
by heating (49–53). Indeed, there is a long-standing record of
neuromodulation techniques that are associated with heating and
reversible changes in brain excitability including transcranial focused
ultrasound (54) and infrared stimulation (55). A heating MoA of DBS
suggests multiple plausible therapeutic pathways. Validating temper-
ature increases with in vivo measures and characterizing such novel
therapeutic cascades would suggest new avenues for DBS
neuromodulation. Optimization approaches may approximate or
differ from those based on conventional mechanisms (VTA vs. VTH)
(31,56,57), including the role of impedance in voltage vs. current
control (58), impact of smaller electrodes as used in directional
leads (59–62), and waveforms not dependent on pulse characteris-
tics (63). Computational models are both subject to experimental
verification and underpin animal and human trials on the mecha-
nism of action (4,64–69), such that the novel theoretical framework
developed here informs new avenues of DBS research and optimi-
zation. Tissue heating during kHz-DBS would interact with any coin-
cident theoretical mechanisms of action (e.g., electro-permeation of
the blood brain barrier (70), conduction block (6), etc.).
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COMMENT

Khadka and colleagues present an important and novel computa-
tional model of the potential therapeutic impact of thermal changes
related to 10 KHz deep brain stimulation. While clinical correlation
will be critical, the importance of this manuscript lies in opening the
eyes of the neuromodulation community to novel mechanisms of
modulation, beyond electrochemical effects of stimulation. We have
long known that tissue heating affects function and in the era of
non-lesional neuromodulation. As a result, we have been vigilant
about controlling for such temperature changes to minimize the
potential chronic, irreversible “injury.” With the computational model-
ing presented here, we must begin to think about the potential ther-
apeutic role of low level temperature changes that may be reversible
and beneficial. While still not clinically proven, we should keep our
eyes open to the potential value of such an approach.

Nader Pouratian, MD
Los Angeles, CA, USA
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