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Background: Novel coronavirus disease (COVID-19) morbidity is not restricted to the

respiratory system, but also affects the nervous system. Non-invasive neuromodulation

may be useful in the treatment of the disorders associated with COVID-19.

Objective: To describe the rationale and empirical basis of the use of non-invasive

neuromodulation in the management of patients with COVID-10 and related disorders.

Methods: We summarize COVID-19 pathophysiology with emphasis of direct

neuroinvasiveness, neuroimmune response and inflammation, autonomic balance

and neurological, musculoskeletal and neuropsychiatric sequela. This supports the

development of a framework for advancing applications of non-invasive neuromodulation

in the management COVID-19 and related disorders.
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Results: Non-invasive neuromodulation maymanage disorders associated with COVID-

19 through four pathways: (1) Direct infection mitigation through the stimulation of

regions involved in the regulation of systemic anti-inflammatory responses and/or

autonomic responses and prevention of neuroinflammation and recovery of respiration;

(2) Amelioration of COVID-19 symptoms of musculoskeletal pain and systemic fatigue;

(3) Augmenting cognitive and physical rehabilitation following critical illness; and (4)

Treating outbreak-relatedmental distress including neurological and psychiatric disorders

exacerbated by surrounding psychosocial stressors related to COVID-19. The selection

of the appropriate techniques will depend on the identified target treatment pathway.

Conclusion: COVID-19 infection results in a myriad of acute and chronic symptoms,

both directly associated with respiratory distress (e.g., rehabilitation) or of yet-to-

be-determined etiology (e.g., fatigue). Non-invasive neuromodulation is a toolbox of

techniques that based on targeted pathways and empirical evidence (largely in non-

COVID-19 patients) can be investigated in the management of patients with COVID-19.

Keywords: coronavirus, COVID-19, non-invasive vagus nerve stimulation, taVNS, tDCS, TMS, neuromodulation,

NIBS

INTRODUCTION

The first cases of novel coronavirus disease (COVID-19) were
reported in Wuhan, China, in December 2019 (1). The disease
caused by the new severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) spread rapidly worldwide and affected more
than three million people, and killed more than 750 thousand
up to July 2020 (1). The virus spreads by droplet transmission
and via direct contact with people while they are infectious in
both the pre-symptomatic and symptomatic phases, although a
potential transmission via fecal, urine, aerosol, and fomite have
been reported (2, 3).

COVID-19 presents a variety of clinical symptoms from
asymptomatic to severe respiratory dysfunction and death.
Key symptoms include fever, anosmia, ageusia, vertigo, nausea,
headache, lower limb pain, cough, fatigue, shortness of breath,
sore throat, arthralgia, chills, vomiting, and others. In more
severe cases, the infection can cause pneumonia, severe acute
respiratory syndrome, and kidney failure (4), and on rare
occasions, stroke (5, 6), and encephalitis (7–9). Systemic
issues such as coagulation disturbances/thrombosis (10, 11)
and cytokine storm (12, 13) are also relevant, especially to
understand how COVID-19 would be associated with nervous

system pathology. Risk factors to severe complications are age

(more than 65 years old), and comorbidities, such as systemic
arterial hypertension, chronic obstructive pulmonary disease,

cardiopathies, morbid obesity, diabetes mellitus, and cancer (14,
15). COVID-19 may not only be restricted to the respiratory
system but would possibly affect the peripheral (PNS) and central
(CNS) nervous systems which appear to have an influence on
morbidity and mortality (16). However, this topic is still a matter
of debate.

SARS-CoV was detected in the cerebral cortex and
hypothalamus of six out of eight confirmed patients, but not in
unconfirmed or control patients (17). The virus may invade the

CNS via olfactory nerves, and from the guts via the vagus nerve,
reaching brainstem nuclei associated with cardio-respiratory
control (18), and thalamus, causing autonomic dysfunction
and/or neurogenic respiratory failure (19). Inflammatory
waves and particles may reach in the supraspinal nuclei in the
brainstem and trigger “the inflammatory reflex,” a pathway that
has both immunosensing and immunosuppressive functions
(20). Thus, the neuroinvasive potential of the SARS-CoV-2
could be related to the severity of some cases (21, 22), and also
extend the impact of the disease on cognitive and behavioral
aspects. While a growing body of evidence suggests that
COVID-19 is associated with neurological diseases (2–4, 23),
the potential neuroinvasiveness of the virus and its relation to
COVID-19 pathophysiology continues to be deliberated. There
are few documented cases of encephalitis (24). It is not clear
if CNS pathological findings are a consequence of direct virus
infection or consequent to hypoxia (25), and the controversy of
SARS-CoV-2 neuroinvasiveness is not resolved

Although it is not clear if COVID-19 affects the nervous
system directly, and how this would impact the severity
of some cases, the inflammatory nature of the disease
is well-recognized (26–29). Despite the uncertainty of the
direct involvement of nervous system pathology in the
pathophysiology of COVID-19, it is clear that patients present
other necessities such as respiratory care and rehabilitation
(22, 30–32) and the management of fatigue, and pain (33,
34), for instance. Strategies to control inflammation usually
include pharmacological approaches (35–37), but especially
given incomplete efficacy and complications in many patients,
alternative treatments approaches are relevant. Non-invasive
brain stimulation (38–40) and vagus nerve stimulation (41)
have the potential to reduce inflammation. These techniques
can be used in the management of psychiatric symptoms
associated with the COVID-19 pandemic (39, 42, 43). Non-
invasive neuromodulation has also shown to be a potent resource
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in cognitive and physical rehabilitation (44, 45) and could serve
additional goals in the management of COVID-19 patients (30).

Here, we review aspects of the SARS-CoV-2 pathophysiology
and its relation to the immune response, autonomic balance,
neurological, musculoskeletal and respiratory symptoms,
and neuropsychiatric aspects of COVID-19. We highlight
the potential applications of non-invasive neuromodulation
techniques such as transcranial direct current stimulation
(tDCS), repetitive transcranial magnetic stimulation (rTMS),
and vagus nerve stimulation (VNS) in the treatment of patients
with disorders related to COVID-19. We link specific non-
invasive neuromodulation techniques to the management of
targeted disease aspects.

Non-invasive neuromodulation may manage disorders
associated with COVID-19 through four pathways:

(1) Direct infection mitigation through the stimulation of
regions involved in the regulation of systemic anti-
inflammatory responses and/or autonomic responses
and prevention of neuroinflammation and recovery
of respiration;

(2) Amelioration of COVID-19 symptoms of musculoskeletal
pain and systemic fatigue;

(3) Augmenting cognitive and physical rehabilitation following
critical illness; and

(4) Treatment of outbreak-related mental distress including
neurological and psychiatric disorders exacerbated by
surrounding psychosocial stressors related to COVID-19.

The above pathways may be linked. For example, systemic
inflammation can occur alongside brain inflammation and
fatigue and/or pain, which will all indirectly aggravate psychiatric
symptoms (e.g., isolation provoked anxiety). These pathways
both in the context of COVID-19 etiology and specific non-
invasive neuromodulation therapeutic targets are addressed here,
alongside practical considerations for NiN deployment.

MATERIALS AND METHODS

This targeted view (5) was steered by groups of authors
involved with research in the fields of inflammation and
immune responses to infections, autonomic nervous system
activity, neurology, psychiatry, psychology, physiotherapy,
rheumatology, neuroscience, bioengineering, and non-invasive
neuromodulation. All the groups reviewed the literature using
relevant keywords in their specific areas, in search for relevant
texts, mainly peer-reviewed articles, to describe a rationale on the
use of NiN in the treatment of patients with disorders related to
COVID-19. The key problems to be addressed were described by
clinicians in reference hospitals in Brazil dealing with COVID-19
patients, and were summarized as: (a) how to help patients who
arrive at hospitals with high levels of inflammatory markers,
many of which are sent after a short time to intensive care
units, and some die after a few days? (b) how to help weaning
from mechanical ventilation, intra-hospital rehabilitation, and
discharge of patients with COVID-19, who seem to present
a slower pattern of recovery, compared to patients without

COVID-19? (c) how to approach patients and health teams who
are presenting elevated levels of distress, including outbreaks
of anxiety; (d) how to prepare for the post-COVID-19 phase,
where some patients will need to be rehabilitated because of the
consequences of the infection?

After searching the peer-reviewed and pre-print literature
and summarizing their findings, key authors from each group
joined to integrate their findings, aiming to describe which
pathophysiological mechanisms would be approached by the use
of NiN. Finally, three authors (BWB, JAC, and MB) externally
reviewed the manuscript. The non-invasive neuromodulation
tools found to be of relevance were tDCS, rTMS, and VNS. The
basis for its use and practical aspects of the application in patients
with COVID-19 are described.

Rationale for the Use of Non-invasive
Neuromodulation Techniques in the
Treatment of COVID-19 Patients
This section presents the theoretical basis that would underpin
the use of non-invasive neuromodulation techniques in
the management of COVID-19 patients. The potential
neuroinvasiveness of COVID-19 represents the first avenue
where these nervous system stimulation techniques would
act in the control of the disease. In addition, non-invasive
neuromodulation can also stimulate the neuroimmune response
to the virus, a key factor to determine the severity of the
symptoms. Non-invasive neuromodulation techniques may
also be useful in the physical and cognitive rehabilitation of the
patients, as well as in the management of the mental health both
in patients and healthcare teams.

Potential Neuroinvasiveness of COVID-19
SARS-CoV-2, such as MERS-CoV and SARS-CoV can be
transmitted through infectious droplets, via angiotensin-2
converting enzyme (ACE2) and transmembrane serine protease
2 (TMPRSS2), which are important to cell viral invasion
(46–48). SARS-CoV-2 can directly access the central nervous
system (CNS) through the circulation or cranial nerves and
the olfactory bulb (18, 49), by synapse-connection (Figure 1)
(50–52). In addition, direct endocytotic infection (similar to
that demonstrated for the ZIKA and TBEV viruses) may
also be a pathway for CNS invasion. Once within the CNS,
coronaviruses affect astrocytes, neuroblasts, and neurons (53–
55). The neurobiological mechanism involves a direct binding
of SARS-CoV-2 to the ACE2 receptor leading to a fall in
ACE2, which is responsible for mediating neuroinflammation,
neurodegeneration, and neurotoxicity processes related to CNS
disorders. Invasion of the brainstem may be also clinically
relevant, since the nucleus of the solitary tract (NTS) and nucleus
ambiguous are crucial for the maintenance of cardiorespiratory
homeostasis (22, 51). Afferents of the vagus nerve convey
peripheral inflammation information to the CNS, specifically in
the medullary NTS and nucleus ambiguous (56, 57). The NTS
responds to hypoxia and hypercapnia by activating or inhibiting
the sympathetic activity (58–61). This autonomic response is a

Frontiers in Neurology | www.frontiersin.org 3 November 2020 | Volume 11 | Article 573718

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Baptista et al. Non-invasive Neuromodulation and COVID-19

FIGURE 1 | Possible mechanisms of SARS-CoV-2 invasion in the nervous system. SARS-CoV-2 may gain access to the central nervous system via peripheral nerves

such as olfactory and vagus nerves. The virus binds to ACE2 receptors, starting the release of cytokines (cytokine storm). This process increases sympathetic activity,

which may be responsible for maintaining the inflammatory condition. The presence of co-morbidities such as hypertension, diabetes, coronary artery disease (CAD),

increased age, and male sex may contribute to the increased risk of complications. Stimulation of parasympathetic activity via TMS or tDCS at the left dorsolateral

prefrontal cortex (F3) or transcutaneous vagus nerve stimulation at the ear may counteract increased sympathetic activity mediated inflammation.

powerful regulator of the innate and adaptive immune system
(62, 63).

The sympathetic nervous system promotes pro-inflammatory
responses, via catecholamine release and beta-adrenergic
stimulation, and the parasympathetic nervous system
promotes anti-inflammatory effects (64). Besides, primary
and secondary immune organs have substantial sympathetic
innervation and almost all immune cells express receptors
for neurohormones and neurotransmitters (65). These factors
suggest that COVID-19may be a systemic disease associated with
systemic inflammation and trigger a massive neuroinflammatory
response, manifested by reactive astrogliosis and microglial
activation (66).

Although respiratory (nasal/oral cavity, pharynx, larynx) to
nervous system transmission is still under investigation in the

case of COVID-19 pandemic, the reports of neurological
symptoms in infected patients support the potential
neuroinvasiveness of SARS-CoV-2. Patients with COVID-
19 in hospitals of Wuhan presented acute CNS symptoms,
such as dizziness, headache, impaired consciousness, acute
cerebrovascular disease, ataxia, and convulsions (67). Earlier
studies also reported the presence of SARS-CoV within the
brain of infected individuals (17, 68), and in the brainstem
of animal models (17, 68, 69), supporting the evidence that
COVID-19 affects the CNS (22), and also a possible bidirectional
communication with the immune system (63). Moreover, other
short-term neurological symptoms observed in COVID-19
patients could also be a manifestation of CNS invasion, such as
high-grade fever, hypoxia, respiratory, and metabolic acidosis at
an advanced stage of the disease (16).
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However, a recent study reported inconsistent results on
SARS-CoV-2 invasion of the CNS, and one cannot rule out
that all the above-described neurological symptoms could
be secondary to a non-neurological process (e.g., general
inflammation, cytokine storm, hemodynamic shock, systemic
thrombotic phenomena). Characterizing the symptoms and
etiology of COVID-19 neurological manifestation is complex
and subject to ongoing studies, including post-pandemic
consequences of the infection, such as encephalitis (70, 71), acute
flaccid paralysis (72), acute disseminated encephalomyelitis (19,
73, 74), neuropsychiatric and cognitive impairments consequent
of neuroinflammation together with prolonged hypoxia (18).
A recent report suggests that neurological manifestations in
COVID-19 patients should be classified as confirmed, probable
or possible/suspected based in a WHO classification (6). This
effort will probably be useful to shed light into the clarification of
the involvement of the nervous system pathology into COVID-
19. Non-invasive neuromodulation techniques are currently used
and trialed for the management of a broad range neurological
diseases (7, 8), and are thus candidates in the management of
neurological manifestations of COVID-19—as considered later
in this article.

Immune Response to COVID-19
The innate immune system can recognize lipopolysaccharides,
viral antigens, and viral genomes through pattern recognition
receptors (PRRs), leading to the activation of intrinsic signaling
pathways and the production of pro-inflammatory and anti-
inflammatory cytokines (75–78). An immune response initiates
after a virus invading the body (host) is recognized by the host
innate immune system through PRRs (79, 80). The expression of
inflammatory factors, maturation of dendritic cells, and synthesis
of type I interferons (IFNs) are induced by the virus, limiting the
spreading of the virus while stimulating macrophages (81).

Notwithstanding this innate immune response to the virus,
Lu et al. (82) argued that the N protein of SARS-CoV could aid
the virus in “escaping” from the expected immune responses.
After the initial activation of the innate immunity, the adaptive
immune response is involved in a battle against the virus
(82). The T lymphocytes (T-cells; CD3+, CD4+, and CD8+)
and B-cells (CD19+, CD20+, CD22+), the cellular adaptive
components, play an important and complex role in the body
defense. For example, CD4+ T-cells stimulate B-cells to produce
virus-specific antibodies, and CD8+ T-cells have the function
to kill the virus-infected cells. Moreover, the helper cells will
produce pro-inflammatory cytokines to aid in the defense.
Indeed, humoral immunity is also essential in fighting against the
virus in order to combat the viral infection (82, 83). However,
SARS-CoV-2 can inhibit T cell functions by inducing apoptosis
of T-cells, and an overreaction of the immune system could
exaggerate elevating the number of free radicals locally that in
turn could lead to damages to the lungs, organs, and. to multi-
organ failure and even death (84).

A cytokine storm results from an overreaction of the immune
system in SARS and MERS patients (84–86), which releases
excessively free radicals and causes acute respiratory distress
syndrome and multiple organ failure (87). Therefore, a cytokine

storm is a systemic inflammatory response due to a release of
cytokines such as TNFα, IL-1β, IL-2, IL-6, IFNα, IFNβ, IFNγ,
and MCP-1 (80), and activated macrophages responsible for
pro-inflammatory mediators such as cyclooxygenase and nuclear
factor-kappa B (88). Sustained inflammatory responses may be
related to the critical conditions of COVID-19 patients, whereas
those patients admitted in the intensive care unit had higher
plasma levels of TNFα, IL-2, IL-7, IL-10, GSCF, IP10, MCP-1, and
MIP1A, indicating that the cytokine storm is related to disease
severity (84, 85, 89).

Therapeutic immunosuppression is fundamental and critical
in the treatment of cytokine storms, notably, in COVID-19 severe
conditions. Mehta et al. (12) reported a subgroup of patients with
severe COVID-19 that might have cytokine storm syndrome.
Huang et al. described patients with COVID-19 in Wuhan
(China), presenting high amounts of IL-1β, IFNγ, IP10, and
MCP-1, probably leading to activated Th1 cell responses (12, 89).
Huang et al. (89) also described that SARS-CoV-2 induces an
increased secretion of Th2 cytokines (e.g., IL-4 and IL-10) that
suppress inflammation, differently to those observed from SARS-
CoV infection. These mechanisms may also be related to the
genesis of acute cerebrovascular disease and acute hemorrhagic
necrotizing encephalopathy (90), resulting from blood-brain-
barrier damage (91). Indeed, data from mouse models suggest
that the influenza virus can aggravate ischemic brain injury by
triggering a cytokine cascade (92). As all the above mentioned
immune responses are linked to peripheral nervous system (PNS)
and CNS activity through autonomic responses, nervous system
activity may be a key factor in the response to infection, which
could in turn be modulated by non-invasive neuromodulation
techniques especially through vagus nerve stimulation.

Autonomic Response in COVID-19 Infection
The vagus nerve releases acetylcholine (ACh) in the periphery to
activate parasympathetic responses in target organs throughout
the body such as lowering heart rate HR) and myocardial
contractility in the heart (93). There are numerous downstream
effects of ACh release in the periphery, such as activating α7
nicotinic ACh receptors (α7nAChR) on macrophages (94–99),
inhibiting the production of IL-1, IL-6, IL-18, and HMBG1 (100–
102) in several tissues and organs, such as the spleen, intestine,
liver, heart, and lung (20, 103). The α7nAChR has an important
role in the control of inflammation since α7nAChR-deficient
mice show higher levels of pro-inflammatory cytokines in blood,
spleen, and liver after endotoxin when compared to wild-type
mice (104). In addition to that, ACh is also released by T and
B cells with autocrine responses such as IL-2 release and T
cell proliferation (105, 106), corroborating its importance in the
inflammatory modulation.

Vagal activity is correlated with decreased inflammatory
markers (e.g., IL-6, C-reactive protein) (107, 108). In
experimental models, lesioning the vagus nerve (vagotomy)
exacerbates the inflammatory response in colitis, pancreatitis,
viral myocarditis, and sepsis (109–111). It also increases the
synthesis of pro-inflammatory lipid mediators, while decreasing
pro-resolving mediators such as netrin-1 and specialized pro-
resolving mediators (SPMs) (112), which decrease the resolution
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of bacteria inflammation (113, 114). In addition, vagotomy
not only decreases ACh release but also catecholamines
(113, 114), which likewise have an important role in controlling
inflammation (115). Deficiency in T- and B-cells related to
increasing in alternatively activated immune cells lead to
exacerbated viral replication, prolonged inflammatory responses
both systemic and locally, induction of procoagulant factors,
hemodynamic changes, ischemia and thrombosis leading to
poor outcomes (116–118). The presence of SARS-CoV-2 in
the brainstem, independently of the infection detected in the
lungs, induces neuronal loss and dysfunction (119), which may
be associated with an autonomic imbalance with a decrease
of ACh and catecholamine release in the periphery. It is
noteworthy that cardiovascular disease and diabetes, risk factors
for worse prognostic and death by the COVID-19 (120–122), are
characterized by decreased autonomic function. This condition
may be relevant in some COVID-19 patients who present a
high inflammatory profile and could be targeted by strategies
to increase vagus activity, which have already been shown to
regulate autonomic function in patients with cardiovascular
diseases and diabetes.

Musculoskeletal Symptoms and Fatigue in COVID-19
Musculoskeletal symptoms and fatigue in COVID-19 may also
represent the affection of nervous and/or immune function.
Skeletal muscle symptoms were shown to be common in
individuals with COVID-19 (67). Different meta-analyses of
COVID-19 clinical characteristics have reported an incidence
of generalized myalgia and/or fatigue that ranges from 35.5
to 42.5% (33, 34, 123). Muscular symptoms are the third or
fourth more frequent manifestation reported by individuals.
Also, these symptoms should be taken into account for diagnostic
criteria, since individuals with severe infection are more
likely to present non-typical symptoms first (67). Individuals
with muscular symptoms presented an increased inflammatory
response, including higher levels of C-reactive protein (67). These
findings are indicative of muscle injury, although the lysis of
striated muscle is considered as a rare complication of COVID-
19 (34).

There are two proposed mechanisms to explain myalgia and
fatigue. The first is that the inflammatory response is not only
the consequence of muscle injury but also the cause. Not only
individuals with a more severe infection have more incidence of
muscle symptoms, but also those who present muscle symptoms
usually have multiple organ lesions (67). Altogether, there is
some evidence that systemic inflammation can lead to muscle
fiber necrosis (124). The second mechanism is related to the
ACE2 receptor targeted by the virus and also found in muscle
cells (67, 124). It is hypothesized that COVID-19 could injure
directly the muscle tissue, but there is no evidence to substantiate
this theory, and it comes from studies of SARS. Two studies
conducted an analysis of post mortem muscle tissue of patients
who died with SARS (68, 125). One of them did not find any
evidence of the virus in muscle tissue (68). The other found
focal myofiber necrosis but with small quantities of inflammatory
infiltration (125). Authors of the second study argue about not
being able to remove the confounding influence of mechanical

ventilation used by these patients, and its side effects on their
findings. Probably, the systemic inflammatory response is the
main cause of muscle symptoms in individuals with COVID-19.
Muscle fatigue and weakness could hamper respiratory function
and become a vicious cycle with the aid of mechanical ventilation
devices, which per se, can cause more weakness (125).

Psychiatric Symptoms and the Mental Health

Outbreak Related to COVID-19
The evidence of the impact of this pandemic on mental health is
evolving. An online survey of 714 Chinese patients with stable
COVID-19 disease reported a 96.2% prevalence of significant
post-traumatic stress symptoms (126). As for the general
population, a survey of residents of Wuhan and surrounding
cities, the epicenter of the China outbreak, the prevalence of post-
traumatic stress symptoms was 7% as assessed up to 2 weeks after
mandatory quarantine for all citizens was implemented. Women
and those with sleep complaints were reported to be at increased
risk (127). As for protective factors of anxiety symptoms, family
income stability, and living with parents were protective (128).
Among healthcare professionals, 28% of nurses and physicians
working in Wuhan were found to have either moderate or severe
symptoms in the domains of depression, anxiety, insomnia, and
distress (129).

Potential Use of Non-invasive
Neuromodulation on COVID-19 Related
Disorders
In the previous section we described how COVID-19 may affect
or be mediated by the nervous system and immune activity,
aspects that can be targeted by non-invasive neuromodulation
techniques in order to manage the disease. We now present the
rationale specific uses of these techniques in the management of
COVID-19 patients, relying largely on evidence from relevant
non-COVID-19 populations, as direct trials of non-invasive
neuromodulation in COVID-19 patients remain limited or
are ongoing.

The possible presence of an autonomic imbalance in COVID-
19 and the importance of vagus nerve activity in the control of
inflammation may represent key features to the use of NiN in the
treatment of COVID-19 patients, markedly those with high levels
of inflammatory profile. Vagus nerve activity can be increased
via the cerebral cortex through areas that modulate it indirectly
such as the left dorsolateral prefrontal cortex (DLPFC) (130),
corresponding to the F3 position of the 10–20 International EEG
System, or temporal cortices. Also, the vagus nerve innervates
the ear, mainly the pinna of the outer ear (131), making it
possible to stimulate these areas transcutaneously to influence
vagus activity (9, 10). In this section, we will review the most
promising, readily available NiN approaches that modulate the
central and peripheral immune response. At the same, NiN may
be useful in the control of musculoskeletal psychiatric symptoms
and through the same or even different cortical targets as those
used in the control of inflammation. The subsequent sections
will present the basis for the use of NiN in the treatment of
COVID-19 patients using techniques such as rTMS, tDCS, and
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FIGURE 2 | Electrode configurations for non-invasive tDCS, VNS, and rTMS following the 10–20 EEG system. (A) Unilateral tDCS with anode positioned over F3 and

cathode over Fp2 on the scalp to modulate the left dorsolateral prefrontal cortex (DLPFC). (B) tDCS using a bifrontal montage to perform anodal stimulation on left

DLPFC where the anode is positioned over F3 and cathode is positioned over F4. (C) Anodal tDCS to stimulate the temporal cortex using a bifrontal configuration

where the cathode is positioned over T4 and the anode over T3 as seen in (a,b), respectively. (D) Non-invasive vagus nerve stimulation by modulating the cervical

branch of the vagus nerve in (a) and the ear in (b). Electrode placement for cervical vagus nerve stimulation is shown in (a). Electrodes are placed at the tragus and the

cymba conchae of the left ear to perform unilateral taVNS as shown in (b). (E) rTMS using a figure-8 coil positioned over F3 to stimulate the left DLPFC suggested for

high-frequency protocol is shown in (a). Right DLPFC is stimulated using the low-frequency rTMS protocol by placing the coils over F4 as shown in (b).

vagus nerve stimulation directed to the DLPFC, motor cortex,
and where the vagus nerve is superficially accessible (Figure 2).

Left Dorsolateral Prefrontal Cortex Neuroimmune

Modulation With TMS or tDCS
The vagus nerve is responsible for the parasympathetic
innervation of the heart; its stimulation decreases heart
rate (HR), and interferes with heart rate variability
(HRV) (132, 133). This phenomenon was also observed
when stimulating other areas of the CNS, such as the
DLPFC (134), perigenual, and mid-anterior cingulate
cortex (pgCC and maCC) (135, 136), which lead
researchers to suggest that those cortical areas modulate
vagal activity.

Studies with transcranial magnetic stimulation (TMS) have
helped elucidate the relationship between the DLPFC and
vagus nerve activity. Iseger et al. (134) applied trains of high-
frequency 10Hz rTMS over 10 cortical regions aiming to
identify which regions would affect HR. They found that 20–
40% of the participants presented decreased HR and heart rate
variability (HRV) with stimulation of the DLPFC, either left
(F3, FC3; 10–20 EEG System) or right (F4, FC4; 10–20 EEG
System). Interestingly, stimulation of the motor (C3, C4–10-
20 EEG System) and parietal (Pz–10–20 EEG System) cortices
showed opposite effects. Effects were more pronounced in the
right DLPFC, which is contrary to other studies showing that
stimulation of the left, but not the right DLPFC changes HRV
(137). The variability found in these studies is probably because
of individual patterns of connectivity between the DLPFC and
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other cortical and subcortical structures. As an example, in a
TMS/fMRI, Iseger et al. (134) and Vink et al. (138) found that
only four under 10 participants had the subgenual cingulate
cortex activated by stimulation of the DLPFC.

The anti-inflammatory effects of DLPFC stimulation support
the idea of DLPFC/vagus connectivity. Aftanas et al. (139)
applied dual-target rTMS to the motor cortex (bilaterally;
10Hz; 100% of resting motor threshold; 4,000 pulses) and
to the left prefrontal cortex (DLPFC; 10Hz, 110% of resting
motor threshold; 3,000 pulses) for 20 days in patients with
Parkinson disease. They reported significant down-regulation
of the spontaneous production of pro-inflammatory cytokines.
Although not tested in this study, the effect may be related to
increased vagal activity and suggests that the DLPFC would be a
potential target in the control of inflammatory cascade in patients
with COVID-19.

Transcranial direct current stimulation (tDCS) has also been
used to probe HRV and vagal activity. Carvenali et al. stimulated
the left DLPFC with anodal tDCS immediately before and during
exposure to stress and showed decreased HRV only in the period
prior to stress exposure (140). Similar results were found with
bifrontal tDCS (141), which raises again the question about the
effect of laterality when stimulating the DLPFC with the aim to
increase vagus nerve activity.

Taking together, those studies suggest that stimulation of
the DLPFC with rTMS or tDCS could be useful to increase
vagal activity. The consequent decrease in inflammation with
those strategies is speculative. However, as patients with COVID-
19 also present mood disturbances such as stress and anxiety,
targeting the DLPFC would be useful in the control of
inflammation and neuropsychiatric problems associated with
the infection (see below for neuropsychiatric effects). Unilateral
tDCS protocols would target the left DLPFC with the anode
positioned over the F3 scalp position (10–20 EEG System), and
cathode over the Fp2 scalp position (10–20 EEG System) or
another distant location. Typical current intensities of 1–2mA,
for 20–30min, and electrodes’ sizes ranging from 5 × 5 cm or
7 × 5 cm. Bifrontal protocols would position the anode over
F2, and cathode over the F4 scalp position (10–20 EEG System)
or in the bifrontal “OLE” montage which can optimize current
delivery to DLPFC (11–13). Targeted tDCS of DLPFC can be
achieved using 4x1-tDCS centered over DLPFC (142, 143). High-
frequency rTMS protocols would target the left DLPFC with
10Hz, trains of 50 pulses, with intertrain intervals of 25–50 s,
at 90–120% of the resting motor threshold, until 3,000 pulses
per session, with figure-of-eight coils positioned at the F3 scalp
position or using neuronavigation (14). The right DLPFCmay be
targeted with low-frequency 1Hz rTMS, maintaining the same
intensity and number of pulses of high-frequency rTMS. More
details for rTMS treatment can be found in the study of Pereira
et al. (144).

Temporal Cortex Autonomic Modulation With tDCS
The use of tDCS over the temporal cortex aims to reach
the insular cortex, an area beneath the temporal cortex with
profuse autonomic and limbic connectivity. Intraoperative
electrical stimulation of the left insular cortex increased blood

pressure and HR and stimulation of the right insular cortex
resulted in opposite effects (145). In addition, left insular
cortex lesion resulted in perturbations of the cardiac autonomic
function in humans (increased cardiac sympathetic tone and
decreased parasympathetic tone) and predisposed individuals
toward a pro-arrhythmic state (145). Furthermore, neuroimaging
studies have shown the relation between the insular cortex
and cardiac autonomic control (146, 147), and acute ischemia
of the insular cortex was independently associated with
poststroke hyperglycemia, which may reflect sympathoadrenal
dysregulation, although no evidence of lateralization was found
(148). Other studies have suggested a role played by the insular
cortex in a phenomenon called post-exercise hypotension (e.g.,
temporary decrease in blood pressure below pre-exercise values)
(149, 150). Hence, the temporal cortex has been the target in
several studies aiming to modulate cardiac autonomic control or
other functions associated with the insular cortex (151–155).

Montenegro et al. (155) assessed the effects of anodal tDCS
(2mA for 20min) over the left temporal cortex on measures
of cardiac autonomic control at rest in two groups of healthy
adults, a group of athletes and a group of non-athletes. The
stimulation improved cardiac autonomic control in athletes but
not in untrained individuals, namely parasympathetic activity,
increased whereas the sympathetic activity decreased. The
authors attributed the specific results to neuroanatomical and
functional changes in the brain induced by long-term exercise
training (155). Furthermore, Piccirillo et al. (154) demonstrated
that anodal tDCS over T3 scalp position (10–20 International
EEG System), 2mA for 15min, improved temporal ventricular
repolarization dispersion, reduced sinus sympathetic activity and
systemic peripheral resistance, and increased vagal sinus activity
and baroreflex sensitivity in older (>60 years old; mean age 70
± 6 years), but not younger (<60 years old; mean age 36 ± 11
years) individuals. It should be noted that older individuals are at
increased risk for worse prognosis and death (120, 121, 156).

Interestingly, besides modulating cardiac autonomic control
at rest, tDCS over the left temporal cortex may also modulate
autonomic control during exercise (151, 152). Okano et al. (152)
applied anodal tDCS over T3 scalp position (2mA for 20min)
in a sample of elite cyclists before submitting them to a maximal
graded cycling exercise test (e.g., stress test) and found that the
stimulation decreased heart rate at submaximal intensities for
roughly half of the exercise test duration. These results were also
replicated by Kamali et al. (151) who found decreased HR during
fatiguing knee extension exercise after concomitant anodal tDCS
over T3 and primary motor cortex (M1) (2mA for 13min) in
trained bodybuilders.

Taken together, these results demonstrate that anodal tDCS
applied over the temporal cortex may improve autonomic
function in healthy individuals at rest and during stressful stimuli
(e.g., exercise). Respiratory exercises are being used in patients
with COVID-19, and temporal cortex tDCS may be used to
increase their effectiveness in restoring respiratory function in
these patients. It is suggested that tDCS may be used with the
anode positioned at the T3 scalp position, and cathode at the
T4 scalp position, with 2mA for 20min, using 5 × 5 cm or 5
× 7 cm electrodes, together with exercises directed to respiratory
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function. For targeted temporal cortex tDCS the 4x1 HD-tDCS
can be used (142, 143).

Neuroimmune Modulation Through Transcutaneous

Vagus Nerve Stimulation
The vagus nerve plays a central role in the autonomic nervous
system. It mediates major visceral functions such as heart rate,
gastrointestinal motility and secretion, pancreatic endocrine
and exocrine secretion, hepatic glucose production, and
other visceral functions. Furthermore, and most relevant to
the current pandemic is that activation of the vagus nerve
suppresses immune and inflammatory responses to pathogen
invasion and tissue injury (157). Modulating the vagus nerve
has been demonstrated to suppress inflammation is being
explored as a treatment for pulmonary arterial hypertension
and COPD-related bronchoconstriction (ClinicalTrials.gov:
NCT01612793).

The vagus nerve may be stimulated invasively and non-
invasively. Cervically-implanted vagus nerve stimulation
(VNS) activates the parasympathetic system and mediates
lymphocytes and macrophages inhibiting pro-inflammatory
production (113, 158–160), improving survival in experimental
sepsis, hemorrhagic shock, ischemia-reperfusion injury, and
other conditions of cytokine excess (161). Interestingly, VNS
increases dopamine levels, and similarly to ACh, dopamine also
shows anti-inflammatory mechanisms by decreasing TNF-α and
inflammasome after endotoxins (113, 114). VNS not only inhibits
the inflammation but also induces the expression of the SPMs,
including the lipoxins, resolvins, protectins, and maresins (162).
VNS also regulates the SPMs expression, polymorphonuclear
infiltration, and the chemokines and cytokines release, which
are directly involved in the inflammatory inhibition within
the nervous system (162). Hence, the so-called pro-resolution
vagal reflex (163), may induce a more efficient resolution
of the inflammatory storm in COVID-19 patients, helping
also to improve the quality of life and survival expectancy in
these patients.

Recently, a non-invasive form of VNS known as
transcutaneous VNS (taVNS) has emerged as a promising,
non-invasive alternative to its surgically-implanted predecessor.
taVNS activates the vagal system by delivering electrical pulses to
the auricular branch of the vagus nerve (ABVN) that innervates
both left and right ears (164). taVNS is simple and inexpensive
to administer, requiring only bipolar electrodes attached to
the skin mainly in the tragus and cymba conchae (131, 165).
A consensus on optimal stimulation parameters is yet to be
determined, however, taVNS is generally administered using the
following range of waveforms: monophasic or biphasic pulses
delivered at 5–25Hz pulsed, ≤ 500 µS pulse width, ≤ 10mA
(166). taVNS can be administered either unilaterally (left ear) or
bilaterally (left and right ears) at either the left tragus or cymba
conchae, for 1 h sessions (166). The safety and tolerability of this
method were assessed in several studies which showed minimal
side effects (165, 167–170). It is important however to consider
parasympathetic activation via taVNS and monitor for cardiac
effects (171).

Transcutaneous cervical VNS (tcVNS) is another form of non-
invasive VNS that delivers electrical stimulation to the cervical
vagus nerve transcutaneously through the neck. Electrodes are
placed over the carotid sheath and stimulation is applied with
devices that activate the underlying nerve and tissue. tcVNS
frequencies range from 5Hz to 5KHz (172, 173). A recent paper
has proposed, based on two case studies, the use of tcVNS to
manage respiratory symptoms in COVID-19 patients (174). They
showed that tcVNS decreased the use of opioids and cough
suppressantmedication, and promoted relief from chest tightness
and shortness of breath, improving lung clearance. As both
taVNS and tcVNS are very easy to administer and studies have
shown they can increase vagus nerve activity, they both are
suggested as potential techniques in the treatment of COVID-
19 patients to control inflammation and decreased respiratory
discomfort associated with respiratory symptoms.

Non-invasive Neuromodulation to Target

Musculoskeletal Symptoms, Restore Normal

Respiration, and Function and to Accelerate Patient

Discharge
Musculoskeletal symptoms in COVID-19 are probably a
consequence of systemic inflammation, but a key factor to be
addressed, as the musculoskeletal system is strongly related
to the capacity to move and perform daily life activities, and
probably should be addressed early in the treatment of infected
patients. Non-invasive neuromodulation techniques could not
only reduce the muscle symptoms present in this population
but also improve respiratory muscle function (175–178), training
(44, 179–181), and fatigue (182), increasing their motivation, and
likely positively affecting the cognitive process, which could aid
them in the recovery from the illness.

Respiratory dysfunction is a major concern in COVID-19
(183), with many patients submitted to oxygen support and
mechanical ventilation (184, 185). It is already known that
respiratory dysfunction has a neural correlate which has in
part to do with the potential role of the supplementary motor
cortex (SMA) in the control of the diaphragm muscle, what
has been recently evidenced by the use of TMS (186) and
functional magnetic resonance imaging (187). Conditions such
as diaphragm loading, and changes in hypoxia and hypercapnia,
change transiently diaphragmatic motor-evoked potentials, but
these changes may be the source of difficulties in mechanical
ventilation weaning.

At present, only one study investigated the effects of
mechanical ventilation on cortical excitability and showed
that motor-evoked potentials were depressed; one mechanical
ventilation was performed non-invasively via nasal mask (188).
This result highlights the potential role of mechanical ventilation
in depressing CNS excitability and raises the question if failure
in weaning from mechanical ventilation has a CNS component.
Reports from hospitals struggling with the COVID-19 infection
have shown that patients stay ∼15–20 days intubated and in
mechanical ventilation and that weaning off is slow (189).
It is possible that this exquisite pattern may be due to the
invasion of the CNS by the virus, as previously shown. Non-
invasive neuromodulation techniques such as tDCS or rTMS
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could be used to help the re-establishment of diaphragmatic
drive, but there is still not sufficient evidence to support
this use. However, one study has shown that tDCS reduced
diaphragmatic motor-evoked potentials (190), which would
suggest that stimulation of the motor cortex would not help in
mechanical ventilation weaning.

Non-invasive Neuromodulation on Outbreak-Related

Mental Distress
Infectious disease outbreaks pose many challenges to society. As
a consequence of fear, stress, social isolation, reduced income,
and other factors, psychiatric symptoms may worsen or emerge
in those previously asymptomatic people (191). Patients with
prior mental illness and frontline healthcare personnel are at an
increased risk of psychiatric symptoms during outbreaks (192).
Moreover, the impact on mental health on survivors occurs in
the long-term, outlasting the pandemic formonths to years (193).
Non-invasive neuromodulation strategies have been increasingly
used as effective clinical interventions in the treatment of diverse
neuropsychiatric disorders (194, 195). Amongst non-invasive
neuromodulation techniques, the most established on clinical
grounds is rTMS, an intervention already approved by regulatory
agencies for the treatment ofmajor depression inmany countries,
such as the United States, across the European Union, Israel,
Australia, and Brazil (196). Furthermore, rTMS may also be
an effective treatment for anxiety and trauma-related disorders,
as shown in a recent meta-analysis (PMID: 31066227). One of
the major barriers of the broad use of rTMS as mental health
interventions is the non-portability of devices. As such, patients
need to move to health care facilities, which can be located either
in small clinics or in hospitals, to have access to this therapy.
Usually, the acute treatment is performed in daily sessions five
times a week for some weeks, while the maintenance treatment
is more spaced out, with fewer weekly, biweekly, or monthly
sessions (197). Since a relevant number of patients that receive
rTMS comprise risk groups for COVID-19 severe outcomes
(e.g., elderly, smokers, chronic cardiopulmonary diseases), there
is a need for session frequency reduction or postponement in
those with relatively controlled symptoms, which should be
addressed in a case-by-case approach. On the other hand, for
hospitals with non-invasive neuromodulation services, rTMS
treatment could be offered both for stable COVID-19 inpatients
and healthcare personnel, assuring proper measures to control
viral transmission are implemented. For inpatients with COVID-
19 and psychiatric symptoms requiring medical intervention,
care must be taken in the prescription of psychotropic drugs if
antiviral medications are concomitantly administered, in order
to avoid harmful drug-drug interactions (198). Antipsychotics
such as risperidone, aripiprazole, and haloperidol (199) and
antidepressants such as fluoxetine, paroxetine, sertraline, and
duloxetine (200) are metabolized by CYP2D6, the same enzyme
that metabolizes chloroquine, a current investigational drug for
the management of COVID-19 (201). In this context, the use of
NiN would be a safer option.

Standard rTMS protocols for the treatment of psychiatric
disorders include high (“excitatory”) and low (“inhibitory”)

frequency trains with coil positioned in the scalp usually over
either the right or left DLPFC, according to the indication
(195, 198, 202). Stimulation of the DLPFC can transynaptically
enhance activity in the ventromedial prefrontal cortex, which
is hypoactive in trauma-related disorders and possibly related
to impaired fear responses, a hallmark of these conditions
(203). High-frequency rTMS delivered over the right DLPFC
has been deemed efficacious for post-traumatic stress disorder
(PTSD) in some clinical trials (195, 198, 202) and would
be a reasonable approach to treat patients with trauma-
related symptoms. However, in the presence of signs or
symptoms that suggest CNS organic compromise, “inhibitory”
protocols should be preferred in favor of minimizing the
theoretical risk of induced seizures. Low-frequency stimulation
of the right DLPFC would be an alternative since one trial
that compared both high and low-frequency protocols found
no superiority of one intervention over the other in the
improvement of PTSD symptoms (204). Furthermore, low-
frequency pulses delivered to the right DLPFC may also be
effective for the treatment of generalized anxiety disorder (205).
Hence, the choice of the ideal strategy should be guided
individually after a careful psychiatric assessment. Since the
length of hospital stay for recovered COVID-19 patients is
around 21 days (156), rTMS treatment might be continued
after discharge in some cases. As neither the immunization
(206) nor transmitter status (207) after COVID-19 symptom
resolution is clear yet, hygienization procedures and personal
protective equipment use should be maintained during further
rTMS sessions.

As for the treatment hospital staff, a small sham-controlled
trial delivered high-frequency rTMS stimulation over the left
DLPFC in healthcare workers diagnosed with occupational stress.
Sessions were performed three times a week for 4 weeks,
with significant improvement of symptoms at follow-up (208).
Another expedite strategy would be to administer intermittent
theta-burst stimulation (iTBS) over the right DLPFC, an
approach effective for PTSD (209). TBS is a particular type of
rTMS that can be performed in shorter sessions (maximum of
10min), minimizing the time that healthcare personnel would
need to spend in the NiN sector.

As opposed to rTMS, tDCS could safely be instituted in
different environments, including the domestic or ICU setting.
However, evidence of tDCS efficacy in anxiety and stress
disorders is evolving (194, 210). Bifrontal 2mA stimulation with
cathode over the right and anode over the left DLPFC was
performed on a recently published controlled randomized trial,
supporting the efficacy of tDCS in the treatment of PTSD (211).
In contrast, evidence for tDCS in the treatment of generalized
anxiety disorder is less robust (212). A randomized controlled
trial showed improvement in physical stress symptoms but not in
the primary outcome measure (Hamilton Anxiety Rating Scale)
in the active group in comparison to sham (213). Therefore,
should tDCS be prescribed, the anode should overlie the left
DLPFC with cathode either on the right DLPFC (preferably) or
over the right supraorbital area. The current intensity should be
set at 2mA for 20min, with 5 or 10 (preferably) daily sessions.
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Home Use of Non-invasive Neuromodulation
Prior to the COVID-19 pandemic, the availability of home-
based non-invasive neuromodulation was already compelling
and developed (214–218), especially noting the inconvenience
for patients already struggling with debilitating disorders to
travel daily for brief non-invasive neuromodulation treatment.
Home-use tDCS could also offer an advantage in the context
of limited outpatient resources for people living in remote areas
(219). Home-base treatment is taken on increasing importance
with travel and in-patient treatment severely constrained by the
COVID-19 pandemic (e.g., many ill patients confined to the
domestic environment).

In the context of clinical care, recommendations for
home-based non-invasive neuromodulation involve intervention
(device, patient) specific levels of oversight to ensure compliance
and tolerability. The remote-supervised tDCS rubric provides
specific guidance (16), that is directly applied through the
COVID-19 pandemic (218). The need for devices that can be
reprogrammed remotely, video-conferencing, and accessories to
support reproducible stimulation are all intervention specific
considerations. For example, online monitoring with a video
conference, so that the supervisor can check the correct
positioning of electrodes may be deemed important only a
first on-boarding session, for only a few sessions until subject
competence is confirmed, or every session (214, 216, 220, 221).

Candidates for home use should receive the device from
care providers, along with appropriate training on a physical
encounter, to minimize the risk of misuse and overuse (194).
Training should cover sponge preparation, electrode placement,
stimulation initiation with ramp up until the target intensity,
and standard operating procedures for troubleshooting common
problems. Customized head-bands that facilitate electrode
positioning and improve compliance could also be provided (142,
220, 222). Parameters used in most clinical trials are similar to
what is usually employed in care facility settings (220). Therefore,
tDCS interventions outlined previously could be recommended
for home use (216).

Practical Aspects and Devices Hygienization
As with all COVID-19 safety procedures, regional and
institutional guidance, applied judiciously to specific protocols
considering changing conditions, will determine which
procedures should be implemented and which should be
abbreviated (143). Social/physical distancing parameters as
defined by governments and regional regulatory authorities vary
and change over time as regional COVID-19 situations evolve.
Any recommendations, including the following discussion, is,
therefore, region and institute specific, and subject to ongoing
risk-burden evaluation. Frequent and adequate hand hygiene
is one of the most important measures that should be used to
prevent infection by the COVID-19 virus (223). Professionals
should perform more frequent and regular hand hygiene, with
appropriate techniques (224), including before and after NiN
sessions. In addition, the use of personal protective equipment
(PPE) is recommended for the provision of health care with
direct contact with infected patients, and include gloves, medical

masks, goggles or face shields and gowns, and for specific
procedures, respirators and aprons (225).

In inpatient units, the use of an apron is recommended for
each suspected case. However, considering that overuse of PPE
may impact supplies in situations of shortages (225). Following
this rationale, in relation to non-invasive neuromodulation,
appropriate protocols should be implemented for the single-use
or cleaning or components—this applies not only to accessories
that both contact patients (e.g., headgear) but to all surfaces,
equipment, and cables (e.g., lead wires from the device). Still,
additional precautions should be taken in patients under isolation
because of COVID-19 and other infections (e.g., acinetobacter,
clostridium), to avoid the risk of cross-infection.

Some essential aspects must be pointed out in relation to
the hygiene of non-invasive neuromodulation equipment1.
The recommended cleaning and disinfection procedures for
healthcare equipment must be followed consistently and
correctly. In particular, for the disinfection of small surfaces
between uses (reusable equipment), the use of 70% ethyl alcohol
is recommended (223). In cases of application of TMS, it may
be important to use support for fixing the coil. If another
associated intervention is not necessary, the therapist must
maintain a distance of at least one meter, always monitoring
the session and the patients’ signals. We emphasize, as with
any COVID-19 safety protocols, the appropriateness of googles,
visors, protective visors, and other PPE, and relevant distancing
protocols, for specific social and clinical environments,
will ultimately be guided by on the current regional and
institutional rules.

CONCLUSIONS

This paper presents empirical evidence, theoretical foundations,
and rationale for the potential use of non-invasive
neuromodulation techniques such as tDCS, rTMS, taVNS,
and tcVNS in the management of COVID-19 related disorders.
These techniques may be useful to modulate peripheral
and central inflammation response, musculoskeletal and
respiratory symptoms, and mental distress associated with
COVID-19, even though neuroinvasiveness is still unclear.
Thus, the potential benefits of non-invasive neuromodulation
should be an important component of ongoing COVID-19
treatment research. Contributing with these international
efforts, we made a web-based open-access guideline resource
that centralizes all available information related to the use of
non-invasive neuromodulation techniques in the management
of COVID-19 symptons, including research results and
treatment protocols.
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