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Abstract

An unsupervised learning algorithm for a stochastic recurrent neu-
ral network based on the Boltzmann Machine architecture is formu-
lated in this paper. The maximization of the Mutual Information
between the stochastic output neurons and the clamped inputs is
used as an unsupervised criterion for training the network. The
resulting learning rule contains two terms corresponding to Heb-
bian and anti-Hebbian learning. It is interesting that these two terms
are weighted by the amount of information transmitted in the learn-
ing synapse, giving an information-theoretic interpretation of the
proportionality constant of Hebb’s biological rule. The anti-Heb-
bian term, which can be interpreted as a forgetting function, sup-
ports the optimal coding. In this way, optimal non-linear and
recurrent implementation of data compression of boolean patterns
are obtained. As an example, the encoder problem is simulated and
trained in an unsupervised way in a one layer network. Compres-
sion of nonuniform distributed binary data is included. Unsuper-
vised classification even for continuous inputs is shown for the
cases of 4 overlapping gaussian spots and for a real world example
of thyroid diagnosis. In comparison with other techniques, the
present model requires for the classification problem an exponen-
tially smaller number of weights.

1.0  Introduction

Boltzmann Machines (Ackley et.al.,1985) are a class of stochastic neural networks. The
dynamic of these recurrent networks with symmetrical connections applies the principles
of statistical mechanics, and is capable of learning a given probability distribution. Boltz-
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mann Machines can be seen as a generalization of Hopfield networks to include hidden
units. The learning algorithm derived for these stochastic networks combines in an effi-
cient way the relationship between Boltzmann distributions and information theory for
density estimation. In a standard variation of the Boltzmann Machine density estimation is
used for supervised training (Hopfield 1987, see also Herz et.al. 1990).

Simultaneously, information theoretical concepts were introduced by many authors
(Becker, 1992, Bridle, 1990, Bridle et.al., 1991, Linsker, 1988,1989,1992) in order to
characterize and model unsupervised learning techniques. Linsker (1988, 1989,1992) pro-
posed an optimization principle, called “infomax”. According to it, synaptic weights adapt
under boundary conditions in order to maximize mutual information between input and
output layers of a cortical network. It has been proved (Atick and Redlich 1990) that sta-
tistically salient input features can be optimally extracted from noisy input by maximizing
mutual information. Some algorithms were developed for maximizing mutual information
by using probabilistic linear neurons (Linsker 1992) or non-linear neurons in a probabilis-
tic “winner-take-all” network (Linsker 1989). In the linear case., the infomax principle is
related to the Principal Component Analysis. Földiak (1989) demonstrates this by using
deterministic networks (no noise on the output) and assuming decorrelated input noise.

The aim of the present work is to define an unsupervised learning paradigm for networks
with Boltzmann Machine architecture. It is based on the maximization of the mutual infor-
mation from the input space to a set of output neurons. This represents a nonlinear feature
extraction from the environment space. In this way, we extend the infomax principle for
probabilistic non-linear neurons, as well as for networks which include hidden neurons
and recurrences. The learning algorithm yields an interesting weighted combination of
Hebbian and anti-Hebbian rule. The weighted coefficients can be interpreted by the info-
max principle. The algorithm is tested by using the encoder problem. Optimal data com-
pression is obtained by using the algorithm presented herein. Unsupervised classification
of even continuous inputs is possible. Bridle et.al. (1991) present the maximization of
mutual information was as a criterion for unsupervised classification. The advantage of the
present implementation of maximal mutual information is that the number of necessary
weights for classification of a -dimensional input in  classes is exponentially smaller.
This is due to the fact that the networks used by Bridle et.al. (1991) need n outputs leading
to  weights. Instead, our model needs only log2n outputs and  weights.

In section 2, the stochastic network architecture is defined and the mutual information
between input and output is calculated. A learning rule for the maximization of the mutual
information is derived and interpreted. Section3 presents simulations for the encoder prob-
lem and compression of nonuniform distributed binary inputs. The results of unsupervised
classification of two examples with continuous inputs - Gaussian spots and the real world
benchmark example of thyroid diagnosis classification - are presented in the last part of
Section 3.

d n

dn d n2log
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2.0  Theoretical Formulation

Let us define a neural network composed of stochastic binary units , taking output value
 with probability  and value  with probability . The probability

is given by

(2.1)

Stochastic units defined in this way describe the effect of thermal fluctuations in a system
of Ising spins in the presence of an external field . In the statistical physics
this property describes Glauber dynamic (Glauber 1963). The parameter  in equation 2.1
denotes an inverse temperature.

For symmetric connections , an energy function (Lyapunov function) can be defined,
and the Boltzmann-Gibbs distribution gives the probability of finding the system in a spe-
cific state . Lyapunov functions for asymmetric weights have been discussed by
Schürmann (1989). The weights  connect the external input vector  with the net and
need not to be symmetric. The external input vector  may assume real values drawn
from a given probability distribution , with  labeling the input patterns. Let us further
label the state of the output units by , and those of the hidden units by . We point out
that the input units should not be understood as Ising spins. For a concrete -pattern they
are fixed, and determine a fixed external field. Then the Boltzmann-Gibbs distribution of
the hidden and output states for a fixed input pattern  can be written as

(2.2)

where  is the partition function

(2.3)

and the energy function

(2.4)

The unsupervised learning, introduced in this paper for a stochastic network, described by
equation 2.2, consists in maximizing the transfer of information from the input vector to
the output neurons. In other words, a message  coded in the input vector should be trans-
mitted through the stochastic neurons, so that the code given by the average thermal value
of the output neurons contains the most information included in the original message . A
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measure for the transmitted information is given by the “mutual information” (Shannon
1948). In our case it can be written as

(2.5)

where  is the probability distribution of the input patterns and  is the conditional
probability distribution of the output configurations given pattern  at the input. Let us
point out the differences to the traditional Boltzmann Machine. The traditional Boltzmann
Machine perform “unsupervised” learning, since it is trained with an ensemble of external
examples, in order to reproduce their probability distribution. The minimization of the
cross-entropy between a given external distribution and the state distribution of the Boltz-
mann Machine leads to a density estimation of the environment. The aim of our model is
to define an “unsupervised” learning, that extracts from the input environment the most
representative “features”. A “feature”, corresponds to a strongly correlated group in the
input space. Maximization of mutual information in the above stochastic network finds
features which correspond to statistical correlation in the input space. These features or
extracted classes are represented in the output code. The mutual information in this sto-
chastic network is a measure of the information conveyed in the extracted classes. Cer-
tainly, this will be useful, only if the dimension of the output is lower than the dimension
of the input. In this case the learning paradigm is expected to find the most representative
features at the output, i.e. they contain the maximum amount of information about the
input distribution. In the case, where the dimensions are equal, maximization of mutual
information assures only reversibility of the extracted map, which means a mere copy of
the eventually noisy input into the outputs. In our model the learning is completely unsu-
pervised. We don’t have an external tutor (desired probability), and the only criterion
used, is the maximization of transmitted information from input to output.

In order to maximize the mutual information we perform gradient ascendent corrections
on the weights. This yields the following learning rule:

; (2.6)

where  is a learning constant.

The derivatives of equation 2.6 can be calculated after some algebra, yielding

(2.7)
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(2.8)

In equation 2.7 the two last terms on the r.h.s. cancel each other, when the sum over  in
the third term is performed. Using equations 2.2, 2.3 and 2.4 we obtain

(2.9)

Introducing the average  over all free neurons states for a fixed input pattern ,

(2.10)

we can write the learning rule by combining equation 2.6-2.9 as

(2.11)

Mutatis mutandis, we obtain for the input connections the following learning rule,

(2.12)

If we cancel the hidden units the learning rule simplifies to

(2.13)

(2.14)

The interpretation of the obtained unsupervised learning rule is interesting. A Hebbian
term is given by  in equation 2.11. It gives the instantaneous correlation between
the neurons. The second  is an anti-Hebbian term given by the averaged correla-
tion between the neurons. Both terms are weighted and summed over all possible states,
being the weighting factor a measure for the information transmitted from one unit to the
other in each possible state. Thus, we get a weighted correction according to whether the
activation of the postsynaptic cell exceeds its average value or not. This considerations
hold also for the connections between input and neurons.
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The Hebbian and anti-Hebbian terms are similar to the learning rule of the traditional
Boltzmann Machine, but the calculated traces and averages differ considerably. In the tra-
ditional Boltzmann Machine the Hebbian and anti-Hebbian terms evaluate the differences
between the “clamped” (supervised phase) and “free” phases. Remember that the
“clamped” averaged in the Boltzmann Machine is done over the neuron states with the
probability , being  the desired probability of the output units. The free or
“free” averaged is done over the neuron states with the probability . In our model,
we don’t have such phases due to the fact, that it is unsupervised. The Hebbian term in our
case is a pure Hebbian without the artificial influences of “clamped” output states. The
weighted sum in equation 2.11 and 2.12 are to be performed with the weighted probability

. That means, that in the present learning paradigm the learning phases are always
“free”. The Hebbian term appears for each possible state and the anti-Hebbian for the
averaged correlation over all possible states. In fact equation 2.10 defines the same anti-
Hebbian “free” average as in the traditional Boltzmann Machine.

3.0  Simulations and Results

3.1  Implementation and Complexity of the Model

We implemented the learning rule given by equation 2.13 and 2.14. It requires the calcula-
tions of probabilities  with equations 2.2-2.4 and probabilities  by summing
over the training patterns. We calculate this probabilities for all possible , i.e. for the
states of the output layer with  output neurons. Let us assume a -dimensional input and

 training patterns. The complexity of the algorithm in order to execute a single update of
all weights is . It is the same as in the equivalent original Boltzmann
Machine.

Let us analyze the case of a classification task for a -dimensional input into  different
classes. A maximum likelihood network or the unsupervised model of Bridle et al (1991)
requires  output neurons and the complexity of the algorithm is  and the
number of weights scale with . In our model the output layer should contain
units. The resulting complexity of the algorithm is some what higher

. The advantage of this model for unsupervised classification task
is not only the theoretical interpretation explained in the last section, but the fact, that it
needs an exponentially smaller number of weights. In the present stochastic network the
number of parameter would be , which is to be compared with the number of
weights of the traditional networks.

As pointed out already, this model and the learning rule allow for recurrent connections,
and they apply as well to structures with canceled recurrent connections. In the following
experiments we limited ourselves to one layer (output), but included recurrent connections
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between the output units. For the examples presented in this paper network architectures
without hidden units gave satisfactory results.

In the next section we demonstrate an application of the unsupervised Boltzmann network
for binary data compression. Unsupervised classification of continuous input data is
shown in the last subsection for an artificial and for a real world problem.

3.2  Encoder Problem

We test our learning paradigm with the same “encoder problem” as considered by Ackley
et.al. (1985) for the original Boltzmann Machine. As the authors remarked, this problem
can be understood as a simple abstraction of the recurring task of communicating informa-
tion among various components of a parallel algorithm. The inputs for the
encoder, consist of  different patterns given by  input units, where only one unit has
the value 1, and the others have the value 0. We assume a uniform pattern distribution
( ). We use a network with  output neurons. In all cases, with the exception of
the  encoding, recurrences in the output layer were disconnected. In all cases we
used  and .

Figure1 shows the evolution of the mutual information to the global maximum values
log2(2) and log2(3) for the  and  encoder problem respectively.

.

N n→
N N

Pγ N 1–= n
5 5→
T 0.1= η 0.01=

4 2→ 5 3→

Epochs

Mutual Inf.

Figure 1
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FIGURE 1. Evolution of the mutual information to the global maximum values log2(2)
and log2(3) for the  and  encoder problem respectively

For the  encoder problem the initial and final distributions after completion of the
unsupervised learning are shown in figure 2. This figure shows the conditional probability
distribution  over the output states  for a given input pattern . Each curve
describes the distribution for a different input. (Note that the abscess has only discrete val-
ues. The lines were drawn to visualize the results). At the beginning a uniform probability
distribution is observed, due to the fact, that we start with small random weights
( ). All codes are therefore equal probable, regardless of the given input.
The mutual information is then zero. After training perfect binary data compression was
obtained. This can be seen in figure 2, where for a given input patterns  only one of the
different codes  has  equal to one and all others zero. For example the input code
1000 labeled by  generates a distribution, which is equal to one at  corre-
sponding to the output state 001 and zero elsewhere. The codes  found at the output for
the different input codes  are presented in table 1.

FIGURE 2. .  encoder problem.Final and initial probability distribution for the
states of the output layer for the different patterns. The lines were drawn to facilitate the
visibility of the results.Note that after training perfect binary data compression was
obtained, since for different input patterns  only one of the different codes  has
equal to one and all others zero.
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The same results were obtained using recurrent connections between the output neurons.
Recurrences at the output layer can be interpreted as lateral inhibitions. The use of recur-
rences slightly accelerated the convergence to the maximum mutual information.

The experiment was repeated for the cases , ,  and  with recur-
rent connections. In all cases perfect encoding was reached. When redundant number of
output neurons are used, the mutual information criterion tries to decorrelated the neurons
by generating a distributed code. This effect was also reported by Ackley et.al. (1985) for
the supervised Boltzmann Machine.

The proposed unsupervised data compression outperform the results obtained with the
conventional Boltzmann Machine. The maximum performance presented by Ackley et.al.
(1985) was a  encoding problem with a 98.6% correct code. In the present model
we were able to perform the maximum compression namely  with a perfect code
(99.97% correctness) in a fully unsupervised way.

3.3  Compression of Non-uniform Distributions

The goal of the following examples is to find a nonlinear reversible transformation of a
non-uniform distributed input code  in a compressed output code . These kind of com-
pression problems demonstrate empirically to be more difficult than the encoder problem.
The reversibility assures complete information transmission into the new code . The
code  has a local input representation. In a local representation each input pattern has
only one non-zero bit. Since it is a compression that maximize the transferred information,
one expect that the most relevant information is extracted, i.e. the more representative fea-
tures will be represented at the output. The most representative information at the output is
expressed by a factorial code. A measure for this is the redundancy of the code. In the fol-
lowing subsections we will use the definition of redundancy as given by Barlow et.al.
(1989).

TABLE 1.

input state
mapped to

Output state
0 0 0 0 1 1 0 0
0 0 0 1 0 1 1 1
0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1
1 0 0 0 0 0 1 1

4 3→ 8 3→ 40 6→ 5 5→

40 10→
40 6→

I F

F
I
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The redundancy  measures the difference between the bit entropy  of code  and
the initial entropy  divided by

(3.4)

where the bit entropy is defined as,

(3.5)

with  being the probability of the th bit taking the value 1 in the input code . A vanish-
ing redundancy indicates a factorial code.

3.3.1 Coding geometric progressions

It is possible to show that geometric progressions have an exact factorial representation
consisting of a binary sequence coding (see Barlow et.al., 1989 and Hentschel and Barlow,
1991). We show in this section the results obtained using a input local representation of an
8-dimensional input forming a geometric progression  with =0.95 and  being
a proper normalization constant. The output layer has three neurons. Table 5 shows the
results after minimizing the mutual information. The code  is the invertible factorial
code obtained after training. The condition of factorial code is not explicitly included in
our learning rule. We obtained a factorial code by maximization of mutual information
only because of the compression.

The code F is explicitly given in table 3.

code Bit Entropy M R
I 4.33 - 45%
F 2.99 2.99 0%

TABLE 2.

code I code F
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 1

R e I( ) I
H γ( ) H γ( )

R e I( ) H γ( )–
H γ( )

-------------------------------=

e I( ) pi pi( ) 1 pi–( ) 1 pi–( )log
i
∑–log
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3.3.2  Power-law coding

As remarked by Hentschel and Barlow (1991) another important distribution is the power-
law distribution  with  being a proper normalization constant. This kind of
distributions are of interest, since for example the word distribution in a normal English
vocabulary follows this power-law distribution. The output layer has two neurons and the
input code has again a local 4-dimensional code. All the results for the obtained revertible
code are presented in table 4 and 5. In this case a code with reduced redundancy is found,
but it is not exact factorial.

TABLE 3.

3.4  Unsupervised Classification

3.4.1  Gaussian Spots

The present model is also suitable for unsupervised classification of continuous valued
inputs. The result can be interpreted as unsupervised “clustering” with sigmoid functions,
which might be useful as preprocessing for supervised learning. Usually clustering is per-
formed with gaussian functions or softmax functions (Bridle et.al., 1991). The most
important difference is, that in our case the whole code expressed by the output layer is
used as class label, reducing therefore the number of adaptive coefficients (see section
4.1). Usually each output (bit) corresponds to a class. In our model a state (word) of the
output layer (labeled by ) represents a class.

0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 0 0

code Bit Entropy M R
I 2.20 - 72%
F 1.28 1.28 5.47%

TABLE 4.

code I code F
0 0 0 1 0 1
0 0 1 0 0 0
0 1 0 0 1 0
1 0 0 0 1 1

TABLE 2.

code I code F

Pγ Kγ 2–= K

α
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We show in figure 3 the result of the unsupervised classification of four gaussian spots
with equal variance. A network with two inputs (coordinates x1 and x2) and two outputs is
used. The different classes correspond to the four possible states of the output layer,
namely: 00, 10, 01, and 11. In figure 3 the four different marks correspond to the four dif-
ferent output states after training. The progress of the two weight vectors during training is
shown as a sequence of points. Perpendicular lines to these weight vectors crossing the
origin define the corresponding separation edges of the sigmoid function. The magnitude
of the weight vectors determine the gain of the two sigmoids. The exact solutions are on
the bisectors of the coordinate axes.

Figure 3
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FIGURE 3. Unsupervised classification of 4 Gaussian spots. The four different marks
signalize the different output states of the tow output neurons. The evolution of the two
weight vectors corresponding to the to output neurons are represented as a sequence of
points.

3.4.2  Thyroid Diagnosis

In this section we present a real word clustering problem. Five labeled tests are used to
learn to predict whether a patient’s thyroid symptoms correspond to the three possible
diagnosis: euthyroidism, hypothyroidism or hyperthyroidsim (Coomans et.al., 1983). The
diagnosis (class label) was based on a complete medical record, including anamnesis, scan
etc. The five inputs correspond to:

1) T3-resin uptake test.
2) Total Serum thyroxin.
3) Total Serum triiodothyronine.
4) Basal thyroid-stimulating hormone (TSH).
5) Maximal absolute difference of TSH value after injection of 200 micro grams of thy-
rotropin-releasing hormone as compared to the basal value.

There were 100 data samples for training. The stochastic network consists of five continu-
ous inputs and two outputs neurons. After unsupervised class extraction three different
classes were recognized, corresponding to the states 00, 01 and 11 of the output neurons.
Note that we didn’t use any class labels for training. The unsupervised extracted classes
were compared with the real diagnosis after training yielding 95% correctness (see table
3). The unsupervised paradigm has extracted statistically correlated features of the input
space corresponding to the true diagnosis. Note, that the unsupervised learning extracted
only three states of the four possible output states (two neurons), which are in fact the
three different possible diagnosis. Figure 4 shows the percentage of correct classification
(relative to the number of elements of each tutor class) for the three different classes. The
abscise represents the four possible output states of the network. Note, that two classes
were correct classified to 100%. The output state 10 is not used. We have compared our
results with a standard supervised back-propagation algorithm. The network structure con-
sisted of five inputs, 15 hidden units and three outputs. The true classes were used during
on-line learning. The obtained percentage of correct classification was 96%. We conclude,
that obtained a remarkable result with the present unsupervised method.
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FIGURE 4. Graphical presentation of the correctness of classification after training.
The overall performance of 95% correctness correspond to the perfect classification of
two classes and 83% in the third. No data point falls in the possible output state 10
corresponding to the expert knowledge of three different possible diagnosis.

4.0  Conclusions

An unsupervised learning paradigm for a Boltzmann stochastic network was introduced in
this paper. The proposed learning is an extension of the infomax principle for the case of a
stochastic recurrent network. Maximum mutual information between the stochastic output
neurons and the external inputs was used as learning criteria. The resulting learning rule
consists of two terms corresponding to Hebbian and anti-Hebbian learning. The two terms
are weighted by the amount of information transmitted in the learning synapse, giving and
information theoretical interpretation for the proportionality constant of Hebb’s biological
rule. Simulations of the encoder problem and nonuniform binary inputs demonstrate the
competitive performance of this method. Unsupervised classification of continuous inputs
is shown for an artificial example and for a real world medical problem. An exponential
smaller number of weights are required compared to known classification techniques.

Figure 4

Hyperthyroidism Euthyroidism Hypothyroidism

% % %
100 100 100 83%

17%

Output states α Output states αOutput states α

11 01 00 10 11 01 00 10 11 01 00 10
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