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Abstract
Objectives. Computational methods are increasingly used to optimize transcranial direct
current stimulation (tDCS) dose strategies and yet complexities of existing approaches limit
their clinical access. Since predictive modelling indicates the relevance of subject/pathology
based data and hence the need for subject specific modelling, the incremental clinical value of
increasingly complex modelling methods must be balanced against the computational and
clinical time and costs. For example, the incorporation of multiple tissue layers and measured
diffusion tensor (DTI) based conductivity estimates increase model precision but at the cost of
clinical and computational resources. Costs related to such complexities aggregate when
considering individual optimization and the myriad of potential montages. Here, rather than
considering if additional details change current-flow prediction, we consider when added
complexities influence clinical decisions. Approach. Towards developing quantitative and
qualitative metrics of value/cost associated with computational model complexity, we
considered field distributions generated by two 4 × 1 high-definition montages (m1 = 4 × 1
HD montage with anode at C3 and m2 = 4 × 1 HD montage with anode at C1) and a single
conventional (m3 = C3-Fp2) tDCS electrode montage. We evaluated statistical methods,
including residual error (RE) and relative difference measure (RDM), to consider the clinical
impact and utility of increased complexities, namely the influence of skull, muscle and brain
anisotropic conductivities in a volume conductor model. Main results. Anisotropy modulated
current-flow in a montage and region dependent manner. However, significant statistical
changes, produced within montage by anisotropy, did not change qualitative peak and
topographic comparisons across montages. Thus for the examples analysed, clinical decision
on which dose to select would not be altered by the omission of anisotropic brain conductivity.
Significance. Results illustrate the need to rationally balance the role of model complexity,
such as anisotropy in detailed current flow analysis versus value in clinical dose design.
However, when extending our analysis to include axonal polarization, the results provide
presumably clinically meaningful information. Hence the importance of model complexity
may be more relevant with cellular level predictions of neuromodulation.
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1. Introduction

Transcranial direct current stimulation (tDCS) is a non-
invasive and painless procedure to regulate cortical excitability.
tDCS has been investigated quite extensively for potential
therapeutic use in neuro-rehabilitation, depression, chronic
pain, focal epilepsy, electroanalgesia, stroke, Alzheimer
disease and tinnitus (Boggio et al 2007, 2009, Ferrucci et al
2008, 2009, Fregni et 2006a, 2006b, 2006c, 2007, Fregni
and Pascual-Leone 2007, Mignon et al 1996, Nitsche et al
2009, Schlaug et al 2008, Vanneste et al 2010, Webster
et al 2006, Williams et al 2009). tDCS is optimized for
each indication by controlled tDCS dose, such as the number,
shape and strength of injected current through the stimulating
electrodes. With the recognition that tDCS dosage design is
not trivial (that electrodes cannot simply be placed over a
target), computational models are increasingly leveraged in
the clinical settings (Antal et al 2012, Borckardt et al 2012,
Dasilva et al 2012, Minhas et al 2010, Parazzini et al 2012a).

Increasingly detailed computational approaches have
been proposed in recent years of varying anatomical and
physiological details (Hyun Sang et al 2009, 2010, Lee
et al 2009, Oostendorp et al 2008, Parazzini et al 2011,
2012a). At the same time, computational models predict
subject specific variability in susceptibility to the same dose
(Datta 2012, Shahid et al 2013), indicating the value of
individualized modelling, or at least modelling across a
set of archetypes. Real translational utility must therefore
balance the value of increased sophistication with the cost
associated with clinical scanning, computational time and
human resources/intervention (e.g. manual correction/pre and
post-processing etc). Thus, the question is not ‘if different
models will yield different predictions’, but rather does
increased complexity change model predictions in a way that
is clinically meaningful and will influence clinical decisions in
study design. While this is a complex and application specific
question, the first step towards systematizing value, across a
myriad of modelling approaches, is to develop a metric of
change versus a simpler approach, and then apply a threshold
to base on the perceived clinical value and added cost versus the
simpler approach. Here, we contrast two general approaches:
(1) generic quantification of the intra-montage analysis due
to the influence of model complexity (anisotropy) on field
distribution, and (2) inter-montage comparison based on the
influence of model complexity using qualitative scoring across
the montages.

A further hurdle to the application of computational
models in clinical design is that models of tDCS only provide
the spatial distribution of E/J in a volume conductor. These
scalar maps are not adequate to decipher the current flow
and neural membrane polarization, which is the first step
towards predicting neuromodulation. Efforts have been limited

to indicating directional current flow at the grey matter surface
based on the polarization of cortical pyramidal neuron somata
(Radman et al 2009). Here, we address the quantification
of fibre bundle polarization. Several factors at the animal,
modelling and clinical level suggest that consideration of fibre
tract (axon) polarization during tDCS is warranted.

Bikson et al (2004) reported the modulatory effect of
the weak electric field on the synaptic function with both
somatic and axon-terminal mediated effects. Kabakov et al
(2012) reported the significance of axonal afferent pathway
orientation in determining the effects (excitatory or inhibitory)
of tDCS. Axonal projections were reported to determine the
direction of modulation, with dendritic orientation affecting
mostly the magnitude of excitation. Building on decades of
stimulation models, Miranda et al (2007) predicted that for
transcranial magnetic and electric stimulation, the component
of the induced electric field parallel to the fibre pathway (EP)
predicts likely sites and strength of excitation of fibre tracts.

In this study, a high-resolution anatomically accurate finite
element head model with 20 anatomically distinct regions
was employed. The assessment was carried out under the
influence of directional conductivity of skull, muscles of
mastication, eye muscles and brain. Three electrode montages
(two HD-tDCS and one conventional tDCS) were used to
estimate the spatial distribution of the induced E-field in the
head model. The specific head model, electrode montages
and the regions of interest were simply exemplary, with
the goals of illustrating the divergence between statistical
and clinical criteria. The intra-montage differences in
E-field patterns were quantified on the basis of the magnitude
and distribution variations. Residual error (RE) and relative
difference measures (RDM) (Meijs et al 2002) were
employed to estimate these variations under three considered
montages (see appendix A for additional details on these
statistical indices). Using qualitative ranking, the role of
anisotropic conductivity with inter-montage variation was
assessed by comparing the strength of modulation across
three regions of interest (ROI). These regions include M1,
contralateral M1 and bi-hemispheric supplementary motor
area (SMA). Fibre architectures of five ROI were used to
investigate the orientation specificity of aforementioned tDCS
montages. Fibre tractography provided additional information
to understand the role of fibre pathways (neuronavigation) in
regulating neural activities.

2. Methodology

2.1. Head model construction

Three scalar MRI volumes consisting of T1, T2 and proton
diffusion (PD) weighted MRI datasets were obtained from
a publically available dataset, the BrainWeb (Cocosco et al
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(a) (b)

Figure 1. Posterior view of an arbitrary coronal slice, illustrating the anisotropic conductivity distribution in the form of conductivity
ellipsoids, (a) non-normalized, (b) normalized. In (a) and (b), electrode locations are marked on the scalp using the International 10-10 EEG
electrode system. Skull electrical conductivity being the lowest in the head model makes the skull tensors too small to be properly visible in
(a); therefore, (b) has been used to show the same conductivity distribution in a normalized form.

1997). The head models were constructed using the protocols
described in our previous study (Shahid et al 2014).
Two montage categories, classical (C3-Fp2) and HD-tDCS,
were considered and electrode configurations corresponding
to individual categories were modelled in the ScanCAD
(Simpleware, Exeter, UK). The electrode locations were
derived from the International 10-10 EEG electrode system.
In total, 20 anatomical regions were classified and the baseline
model, m1, consisted of around 2 million tetrahedral elements.
In order to achieve greater accuracy, the mesh generation
algorithm in ScanIP (Simpleware, Exeter, UK) was fine-tuned
to obtain higher mesh density in the GM, WM and sub-cortical
regions.

The International Consortium of Brain Mapping (ICBM)
DTI atlas (ICBM-DTI-81) was used to obtain the co-registered
fractional anisotropy (FA), principal diffusion direction and
diffusion tensor maps. The methods and the tools used
to process the DTI data (averaged and subject-specific)
are described elsewhere (Shahid et al 2013, 2014). Tissue
classification, three-dimensional head model generation,
tetrahedral mesh generation and DTI data processing were
performed on a Dell T5500 workstation with 24 GB of
RAM and 2.0 GHz Xenon processor. Tissue segmentation
was performed in a semi-automated manner and took almost
18 h. Three-dimensional head model and tetrahedral mesh
were generated in ScanIP in 6 h.

For a real positive definite symmetric tensor, the
eigenvalues are always real (positive and non-zero) and
the eigenvectors are orthogonal to each other. Under the
assumption that in DTI the water self-diffusion is characterized
by a multivariate Gaussian distribution, the diffusion tensor
can be considered as a covariance matrix describing the
translational displacement of diffusing molecules. Therefore,
the diffusion tensor can be represented by an ellipsoid
highlighting the probabilistic nature of molecular diffusion at a
voxel scale (Shimony et al 1999, Le Bihan et al 2001). The axes
(shape) of diffusivity/conductivity ellipsoid can be defined
by the three eigenvalues and its orientation (three principal
axes) by the corresponding principal eigenvector. Hence,
the strength of a conductivity tensor is represented by its

principal eigenvalue and its orientation by the corresponding
eigenvector. Using an arbitrary coronal slice, figure 1 illustrates
the ellipsoidal representation of the conductivity tensor profile.
It can be seen that the volumes of WM ellipsoids are variable
and smaller than that of the GM and sub-cortical structures
(figure 1(a)). This behaviour is indicative of the role of average
isotropic conductivity (σ ISO) values used in equation (8).

2.2. Conductivity assignment

The application of quasi-static approximation of Maxwell’s
equation in a low frequency range (0–10 kHz) is well
documented (Plonsey and Heppner 1967, Malmivuo and
Plonsey 1995, Nunez and Srinivasan 2006). In this low
frequency range, the dominant dielectric behaviour of
biological material is only associated with its resistive
properties. Under quasi-static assumption, the electric field
inside a volume conductor model can be estimated by

E = −∇V, (1)

where V is the potential difference and using Ohm’s law, the
current density (J) associated with E can be obtained by

J = σE, (2)

where σ is the electrical conductivity of a medium and for
electrically anisotropic materials such as skull, muscle or brain,
the conductivity can be represented by a symmetric 3 × 3
tensor:

σ =

⎛

⎝
σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

⎞

⎠ . (3)

In this study, each segmented region of the head model
was assigned with their respective average isotropic electrical
conductivities. These average values are listed in table 1. In
electrical terms, human skull can be considered as a series
connection of high, low and high resistor network, respectively.
This series network exhibits low conductivity in the radial
direction (σ R) and much higher conductivity in its tangential
direction (σ T) (Wolters et al 2006). To represent the directional
conductivity of a skull, the conductivity ratio of 10:1 (σ T =
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Table 1. Isotropic conductivity assignment.

Conductivity
Materials (S m−1) Reference

Scalp 0.43 Holdefer et al (2006)
CSF 1.79 Baumann et al (1997)
Subcutaneous fat 0.025 Gabriel et al (1996a)
Eye-muscles/muscles 0.16 Gabriel et al (1996a)

of mastication
Eye 0.5 Gabriel et al (1996a)
Eye-lens 0.31 Gabriel et al (1996b)
Skull 0.015 Oostendorp et al (2002)
GM 0.32 Goncalve et al (2003)
WM 0.15 Nicholson (1965)
Hindbrain (cerebellum, 0.25 Average brain conductivity
pons, medulla, brainstem) (Geddes and Baker 1967)
Red nucleus 0.25 Average brain conductivity

(Geddes and Baker 1967)
Thalamus 0.32 Goncalve et al (2003)
Hippocampus 0.32 Goncalve et al (2003)
Fornix crura 0.32 Goncalve et al (2003)
Caudate nucleus 0.32 Goncalve et al (2003)
Globus pallidus par externa 0.32 Goncalve et al (2003)
Globus pallidus par interna 0.32 Goncalve et al (2003)
Putamen 0.32 Goncalve et al (2003)
Superior sagittal sinus 1.79 Conductivity of CSF

(Baumann et al 1997)
Electrode pads 1.4 Datta et al (2009)
Conductive gel 0.43 Conductivity of scalp

10σ R) was used in this study (Akhtari et al 2002, De Munck
1988, Rush and Driscoll 1968).

In order to restrict the volume of a conductivity tensor to
its isotropic value (volume), the volume constraint (Wolters
2003) was applied:

4
3πσRσT σT = 4

3πσ 3
ISOSKULL

, (4)

where
(
σISOSKULL

)
is the isotropic electrical conductivity of the

skull. The tensor representation of the local anisotropic skull
conductivity

(
σANISOSKULL(local)

)
is given by

σANISOSKULL(local) =

⎡

⎣
σR

σT

σT

⎤

⎦ . (5)

The conductivity tensor representation
(
σANISOSKULL

)
in

the Cartesian coordinate system is obtained by the following
transformation (eigenvalue decomposition):

σANISOSKULL = AσANISOSKULL(local)A
T , (6)

where A is the rotational transfer matrix. A custom-built
code was written in Matlab script to implement eigenvalue
decomposition in COMSOL environment.

Using the same methodology, directional conductivities
were introduced in the muscles of mastication

(
σANISOmuscle

)
and

eye muscles
(
σANISOeye

)
. However, the longitudinal eigenvalues

(σ L) were chosen to be five times higher than their respective
transverse eigenvalues (σ Trans), i.e. σ L = 5σ Trans (Wang et al
2001):

σANISOmuscle = A

⎡

⎣
σL

σTrans

σTrans

⎤

⎦ AT . (7)

In this study, the conductivities of the GM, WM and
sub-cortical structures were considered anisotropic and the
conductivity distribution was estimated from the measured
DTI data. The linear conductivity to diffusivity relationship
based on the effective medium approach (Tuch et al 1999) is
not well correlated at the intra-tissue level, although a well-
defined linearity was analysed on the intra-tissue level (Kim
et al 2001). Additionally, the effective medium approach is
highly susceptible to the partial volume effect (PVE) of the
DT-MRI and may yield unrealistic estimates of conductivity
for voxels adulterated with the PVE (Kun et al 2008). The
derivative of the effective medium algorithm (Hallez et al
2008, 2009) uses the volume constraint (Wolters et al 2006)
to restrict the geometric mean of the eigenvalues, i.e., it keeps
the volume of the conductivity tensor equivalent to the volume
of the corresponding isotropic tensor. These methods employ
the principal eigenvalue and its associated eigenvector to
estimate the conductivity profile. A recent study by Shahid et al
(2013) demonstrated the implications of considering various
anisotropic approaches in the forward solution of tDCS.
Based on that study, the equivalent isotropic trace algorithm
(Miranda et al 2001) was selected. This algorithm utilizes the
entire diffusion tensor information to define the conductivity
distribution and relates the conductivity tensor (σ ) to the
measured diffusion tensor (D) by a scaling factor, which in
turn is based on the ratio of a given isotropic conductivity
trace (3σ ISO) to the diffusion tensor trace (Dxx + Dyy + Dzz):

σ = 3σISO

trace(D)
D. (8)

The equivalent isotropic trace algorithm was implemented
in Matlab and the resulting six conductivity components were
exported to COMSOL. This approach estimates the anisotropic
conductivity distribution based on the inherent variability in
the measured diffusion tensor and at the same time constrains
the trace of the conductivity tensor by its equivalent isotropic
trace. Since this method keeps the sum of eigenvalues constant
(locally), it is not prone to the errors associated with the PVE.
Additionally, the use of complete diffusion tensor information,
rather than the main eigenvector, has been demonstrated to
generate much smoother fibre tract reconstruction along with
improvement in fibre propagation in regions of low anisotropy,
such as the GM and fibre crossing regions of the WM (Lazar
and Alexander 2003, Tensaouti et al 2009).

2.3. Electrode configurations and field calculations

In this study, three electrode configurations were assessed
based on their efficacy to modulate the selected ROIs. Montage
m1 was based on high definition (five electrodes) configuration
(Datta et al 2009). The location C3 was selected for anode,
whereas C1, FC3, CP3 and C5 were considered as cathodes.
In montage m2, anode was placed at C1, whereas cathodes
were placed at Cz, C3, FC1 and CP1 (figures 3(a) and
(b)). Each high-definition electrode had a radius of 6 mm
and the conductivity of copper. The electrode gel with the
conductivity of 0.43 S m−1, approximate thickness of 2 mm
and a radius of 6 mm was emplaced between the scalp and
the electrodes. In the third montage m3, 5 × 5 cm2 electrode
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pads of conductivity 1.4 S m−1 were placed at the approximate
locations of C3 (anode) and Fp2 (cathode).

Assuming that the spongy pads and gel had their
exposed surfaces connected to a constant current stimulator
by conductive rubber and copper electrodes, respectively,
in such a case, the conductivity of the conductive surfaces
can be considered much higher than that of the volume
conductor, spongy pads or conductive gel. Therefore, the
Dirichlet boundary condition (V = V0) at the exposed surface
of the spongy electrode (anode) and conductive gel (anode)
and V = 0 at the exposed surface of the spongy cathode and
the gel can be applied. Remaining external boundaries were
considered electrically insulated (n · J = 0) and the continuity
of the normal component of J was maintained across all the
inner boundaries (n · J1 = n · J2).

In clinical practice, a constant current stimulator is used;
therefore, to achieve the desired electric current (1 mA)
through the anodes (in all three cases), the voltage across the
anode surface was readjusted. Based on the initial estimate
(V = 1 V), the voltage was readjusted and in order to
confirm the injection current of 1 mA through the active
surface, the integral of J was determined under each electrode
(see appendix B for the list of voltages applied in different
simulations to adjust the injected current at 1 mA). The
difference between the injected and return currents was
estimated to be around 7% in m1 and m2 and 5% in m3. It
was observed that this error could further be reduced by using
higher order basis functions (Marin et al 1998) or selectively
increasing the mesh density in specific regions, such as
electrodes, gel and scalp. However, further refinement was
deemed unnecessary to keep computational cost manageable.

In each case, the resistances between electrodes and
current distribution from anodes to cathodes were estimated.
Further details shall be discussed in the results and discussion
sections. The models considered in this study were electrically
passive, i.e. there were no active sources inside the volume
conductor. Additionally, the impact of the initial electrical state
of neurons on the induced electric field was not considered.
However, the effects of the brain fibre architecture were
incorporated. Under the quasi-static approximation, Laplace’s
equation was used to solve the models in a commercial finite
element package COMSOL using the algebraic multigrid
preconditioned conjugate gradient (AMG_CG) solver setting.
The numerical calculations were performed on Dell T7500
workstation, with 24 GB of RAM and two physical Xenon
2.66 GHz processors. For isotropic models, the convergence
(error tolerance of 10−8) was achieved in approximately
50 min, whereas, for anisotropic models, 5 extra minutes were
required to achieve the desired tolerance.

2.4. Induced E-field tracking and assessment of stimulation
mechanism along fibre pathways

The fibre architecture can be used to investigate the orientation
specificity of different tDCS montages. With the help of this
additional information, it is possible to analyse the role of
fibre pathways in regulating the neural activity. Based on the
study conducted by Miranda et al (2007), three possible neural
modulation mechanisms were investigated.

For a long unmyelinated fibre, the passive response of an
axon to the induced E-field can be obtained from the Cable
equation (Basser and Roth 1990, 1991):

λ2 ∂2V
∂l2

− τ
∂V
∂t

− V = λ2 ∂EP

∂l
, (9)

where τ is the time constant and λ is the space constant. In
this study, the value of λ is considered 1 mm (Silva et al
2008). At a steady state, change in the membrane potential
V = (Vmembrane − Vresting) due to a sub-threshold stimulus is
given by

V (l) = −λ2 ∂EP

∂l
. (10)

EP is the component of the induced electric field (E) which
is locally parallel to the fibre segment (&l) having a total
length l (mm). In other words, it is the gradient of EP,
which defines the potential sites of modulation along a fibre
path. Another possible candidate for neural modulation is
λEP itself. For instance, in a high E-field region, for a fibre
of length l ≫ λ, a possible site for hyper-/de-polarization
would be in the vicinity of fibre termination or a sharp
bend. Another possible scenario would involve axons crossing
internal boundaries, such as the GM–WM boundary or WM–
sub-cortical boundary. Change in tissue conductivity would
give rise to a discontinuity in the normal component of
the induced E-field. This discontinuity caused by the tissue
heterogeneity can lead to a change in the membrane potential:

V (l) = −λ
&EP

2
e− |l|

λ . (11)

In this study, these mechanisms of neural modulation
were compared on fibres of five different regions, namely
left cortico-spinal tract (L-CST), right cortico-spinal tract (R-
CST), genu of corpus callosum (G-CC), splenium of corpus
callosum (S-CC), middle section of corpus callosum (M-CC)
and modified fibres of L-CST.

These fibres were generated by the orientation corrected
and co-registered principal eigenvectors and the FA maps.
Using the regions of interest as proposed by Wakana
et al (2007), these parameters were used to perform the
fibre tracking using the deterministic approach, FACT (fibre
assignment by continuous tracking), implemented in the DTI
studio (Jiang et al 2006). Five ROIs were created to perform
the fibre tracking with the FA threshold of 0.2 and the angle
limit of 45o. As a special case, selected fibres across L-CST
were tracked using the FA threshold of 0.1 and the angle
limit of 75o. The motive behind this was to analyse the role
of fibre crossing at the GM–WM interface along with the
impact of sharp bends on membrane de-/hyper-polarization.
Using a custom-built code in Matlab, artificial bends were
introduced by assuming that these fibres tend to be projected
normal to the local WM boundary. To ensure smooth transition
along the fibre path, spline interpolation was applied. Fibres
were assigned their respective EP values using the cubic
interpolation. The activating functions, equations (10) and
(11), were implemented, along the stretches of the fibres,
using a custom-built code in Matlab and 3D visualization was
performed in the Paraview (Squillacote 2007).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. The effect of non-cortical and brain anisotropy on the strength and distribution of induced electric field under the high-definition
montage m1. In (a)–(d), the posterior view of an arbitrary coronal slice has been selected and changes in E-field strength and distribution
associated with various anisotropic regions under m1 configuration have been projected using a single scale. In (e)–(h), each model is
represented by its individual Emax scale under m1 configuration. Slice (a) and 3D brain (e) illustrate E-field distribution under m1 montage
using isotropic conductivities. (b) and (f) illustrate field distribution under the influence of skull and muscles anisotropic conductivities.
(c) and (g) depict distribution under brain anisotropy. (d) and (h) show the combined influence of skull, muscles and brain anisotropy.

Table 2. The strength of electric field (median values) in various regions of the human brain under high-definition montage m1.

m1: 4 × 1 HD-montage with anode at C3
Model with skull Model with Model with skull, muscles

Isotropic model and muscle anisotropy brain anisotropy and brain anisotropy
Regions Emediam (mV m−1) Emediam (mV m−1) Emediam (mV m−1) Emediam (mV m−1)

GM 8.0 7.0 7.8 7.0
WM 12.7 10.4 13.0 10.8
Hind brain 3.3 3.9 3.3 3.9
Fornix crura 11.7 8.8 12.0 9.0
Hippocampus 4.6 4.3 4.5 4.3
Thalamus 9.0 6.5 9.1 6.6
Putamen 7.9 6.5 8.5 7.1
Caudate nucleus 8.4 6.4 8.5 6.5

3. Results

3.1. Effects of anisotropic conductivity on induced electric
field

Initially the high-definition montage m1 (4 × 1 HD-montage
with anode at C3) was used to analyse the specific effects
of non-cortical (skull and muscle of mastication) and brain
anisotropic conductivity on the brain electric fields. Compared
to the isotropic case, the inclusion of the skull and muscle
anisotropy reduced the average electric field strength in the
GM by 13% and in the WM by 20% (table 2). Compared to
the isotropic case, inclusion of only the brain anisotropy in
the model reduced the average GM electric field strength by
2.5% and increased the WM electric field strength by 2.3%.
Inclusion of both the non-cortical and brain anisotropy reduced
the average GM electric field strength by 13% and 16.2% in
the WM, when compared to the isotropic model.

Qualitative changes in the electric field intensity and
distribution following the inclusion of anisotropy are
illustrated in figure 2. Compared to the isotropic case
(figures 2(a) and (e)), consideration of only skull/muscle
anisotropy resulted in a global absolute decrease in electric

field strength (figure 2(b)) and an increase in relative spread
along the cortex (figure 2(f))—both presumably reflecting
increasing current shunting at supra-cranial levels. Compared
to the isotropic model, the most evident change following the
consideration of only the brain anisotropy was the enhanced
electric field along WM tracts, notably the left pyramidal tract
(figure 2(c)). The grey matter did not show any qualitatively
notable degree of field variation (figure 2(g)). Inclusion of
skull, muscle and brain anisotropy resulted in qualitative
changes consistent with the collective actions (figures 2(d)
and (h)). These results corroborate and expand upon previous
modelling studies on the role of anisotropy (Oostendorp et al
2008, Shahid et al 2012, Suh et al 2012).

We next analysed the influence of anisotropy (non-cortical
and brain) in the three considered montages. Under both
isotropic and anisotropic (non-cortical and brain) conditions,
in 4 × 1-ring montage m1, high E-field regions were confined
in the proximity of the anode (C3) circumscribed by the outer-
electrode ring (figures 3(d) and (g)), whereas, in 4 × 1-ring
montage m2, high field regions were observed around the
precentral and the superior frontal gyri, in the proximity of the
anode C1 and within the ring (figures 3(e) and (h)). In montage
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(a) (b) (c)

(g) (h) (i)

(d) (e) (f)

Figure 3. Role of electrode montage on the site and strength of induced electric field. (a) High-definition 4 × 1 montage m1 with anode
located at C3. (b) High-definition 4 × 1 montage m2 with anode located at C1. (c) Conventional bi-cephalic montage m3 based on
5 × 5 cm2 electrode pads. In m3, anode is positioned at C3 and the cathode is placed at the approximate location of Fp2. (d)–(f) Depiction
of cortical electric field strength and distribution patterns of isotropic models under considered montages. (g)–(i) Depiction of the cortical
electric field strength and distribution patterns of anisotropic models (skull, muscles and brain) under considered montages. (For each
volume plot, the colour scale has two maximum values. The one at the top indicates the maximum value of the electric field and the bottom
one indicates the value at which the plot was rescaled for better visualization.)

m2, the location of the anode and its proximity to the superior
sagittal sinus, which was assigned the conductivity of the
CSF, channelled more current through the inter-hemispheric
fissure generating additional clusters of high E-field in the
corpus callosum (figures 4(b) and (e)). Under both isotropic
and anisotropic conditions, the current flow generated by the
conventional tDCS montage m3 was mostly distributed around
and between the electrodes (figures 3(f) and (i)).

The magnitude (residual error) and topographic (relative
difference measure) variations in induced electric fields
due to the inclusion of non-cortical and brain anisotropy
under the three considered montages were also quantified
in tables 3–5. For montages m1 and m2, the highest magnitude
and topographic variations due to the combined effect of
(cortical and non-cortical) anisotropy were observed in the
GM followed by the WM. In sub-cortical regions, magnitude
variations in the range of 10–40% and topographic errors in

the range of 5–20% were observed. In the case of montage m3,
the highest variations (residual error = 55; relative difference
measure = 16%) were observed in the WM region.

The impact of tissue anisotropy on the input impedance
(stimulator output) was also examined. In the high-definition
montages (m1 and m2), the effect of skull and muscle
anisotropy resulted in 1.5% increase in the input impedance.
On the other hand, in conventional montage m3, the skull
and muscle anisotropy increased the input impedance by
21%. In the three considered montages, the influence of
brain anisotropy on the input impedance was calculated to
be less than 0.1%. Using the integral of J across the cathodes
surfaces of both high-definition montages, the return currents
to individual cathodes were determined. Table 6 shows the
proportion of the return current to the individual cathodes
in high-definition montages. It is worth mentioning that,
under high-definition montages, the effect of anisotropy (skull,
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(a) (b) (c)

(d) (e) (f)

Figure 4. Posterior view of an arbitrary coronal slice depicting (a), (b) and (c) electric field strength and distribution patterns of isotropic
models under considered montages. (d)–(f) Illustration of electric field intensity and distribution patterns of anisotropic (skull, muscle and
brain) models under considered montages. (For each slice plot, the colour scale has two maximum values. The one at the top indicates the
maximum value of the electric field and the bottom one indicates the value at which the plot was rescaled for better visualization.)

Table 3. Magnitude (RE) and topographic (RDM) errors in the induced electric field of the volume conductor model due to the inclusion of
skull, eye muscles, muscle of mastication and brain directional electric conductivity. The electrode configuration is 4 × 1 high-definition
with anode at C3 and four cathodes around C1, C5, FC3 and CP3.

m1: 4 × 1 HD-montage with anode at C3
Iso versus skull and Iso versus brain Iso versus skull, muscles
muscle anisotropy anisotropy and brain anisotropy

Regions RE RDM RE RDM RE RDM

GM 147.2 34.5 5.0 4.9 146.1 36.1
WM 121.3 31.1 9.9 8.7 111.5 34.1
Hind brain 23.3 23.4 6.7 6.3 23.3 23.5
Fornix crura 44.3 9.9 4.3 4.1 42.7 11.1
Hippocampus 20.0 11.7 4.3 4.1 21.6 13.1
Thalamus 42.9 7.1 4.1 4.1 45.3 8.1
Putamen 34.6 10.9 7.7 6.7 29.2 14.0
Caudate nucleus 43.9 16.1 9.3 7.9 37.7 15.7

Table 4. Magnitude (RE) and topographic (RDM) errors in the induced electric field of the volume conductor model due to the inclusion of
skull, eye muscles, muscle of mastication and brain directional electric conductivity. The electrode configuration is 4 × 1 high-definition
with anode at C1 and four cathodes around Cz, C3, FC1 and CP1.

m2: 4 × 1 HD-montage with anode at C1
Iso versus skull and muscle anisotropy Iso versus brain anisotropy Iso versus skull, muscles and brain anisotropy

Regions RE RDM RE RDM RE RDM

GM 100.9 24.8 4.6 4.6 101.3 26.3
WM 94.9 22.6 8.0 7.3 88.9 25.3
Hind brain 21.5 21.5 6.1 5.1 23.0 21.9
Fornix crura 24.5 8.3 5.9 5.5 21.1 9.8
Hippocampus 13.3 11.9 3.9 3.9 13.7 13.4
Thalamus 28.1 5.1 4.6 3.9 30.2 7.1
Putamen 28.6 15.2 10.1 8.9 30.2 21.3
Caudate nucleus 28.7 12.9 6.4 6.1 27.0 16.6
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Table 5. Magnitude (RE) and topographic (RDM) errors in the induced electric field of the volume conductor model due to the inclusion of
skull, eye muscles, muscle of mastication and brain directional electric conductivity. The electrode configuration is conventional C3-Fp2.

m3: C3-Fp2 conventional electrode montage
Iso versus skull and Iso versus Iso versus skull, muscles
muscle anisotropy brain anisotropy and brain anisotropy

Regions RE RDM RE RDM RE RDM

GM 63.5 15.6 6.5 6.4 62.6 16.7
WM 64.7 13.3 12.2 10.2 55.1 16.3
Hind brain 24.9 11.6 5.4 5.2 23.5 12.3
Fornix crura 49.9 6.9 4.5 4.4 49.3 9.4
Hippocampus 39.7 4.3 6.3 5.6 43.2 6.9
Thalamus 45.3 3.1 6.6 6.2 49.5 7.3
Putamen 52.1 3.4 10.7 9.8 46.5 8.3
Caudate nucleus 51.9 7.8 7.9 6.9 46.9 9.7

Table 6. Return current distribution among cathodes in
HD-montages.

Montage m1 Montage m2
Electrode (skull, muscle and Electrode (skull, muscle and
location brain anisotropic) location brain anisotropic)

C1 21.3% Cz 29.1%
C5 26.7% C3 18.2%
FC3 30.0% FC1 26.2%
CP3 21.0% CP1 26.5%

muscle and brain) on return current distribution was less than
0.1% (due to the close proximity of electrodes).

3.2. Clinical relevance of model complexities

Under the isotropic conditions, replacing the montage m1
by m2 resulted in a reduction of 7.7% in the averaged
electric field strength across the M1 region. For the brain
anisotropic model, montage replacement resulted in a drop
of 8.4% and for model with non-cortical anisotropy, the
replacement of montage increased the average electric field
value by 9.6% across the motor cortex region. The inter-
montage comparison between the isotropic models of m1
and m3 showed the drop of 56.4% in the average electric
field across the M1 region. For brain anisotropic models, the
inter-montage variation (m1 versus m3) resulted in a drop
of 56.1% in the electric field strength across the M1 area
and models with skull and muscle anisotropy resulted in a
drop of 75.8% across the M1 region. Therefore, the maximum
inter-montage difference, in the electric field strength across
the M1 region, due to the inclusion of anisotropy was 20%
(m1 versus m3). Similarly, by comparing the other two
regions of interest, the maximum inter-montage variation
due to anisotropy was not more than 20% (table 7). These
anisotropy related variations should change the estimated local
current flow pattern in the ROIs (inter-montage analysis of
the influence of anisotropy); however, our analysis suggests
that inter-montage variations (for clinicians considering which
montage to select) were not significantly influenced by the
inclusion/exclusion of anisotropy. Thus, for the considered
HD-montages, quantitative changes in the electric field due
to the inclusion of anisotropy do not necessarily equate to

meaningful changes as far as clinical dose decisions across
HD-montages are concerned (montage selection).

3.3. Assessment of the electric field along fibre tracts

Under the assumption that neuromodulation in a particular
brain region or a network of neurons can be predicted by a
function of the induced electric field, we considered three
possible representations of neuromodulation based on the
induced electric field. The consideration of only electric
field/current density is common in the tDCS modelling
literature following the quasi-uniform assumption (Bikson
et al 2012a), but more precise functions of the electric field
have been proposed when morphological and/or diffusivity
data are available (Chaturvedi et al 2010, 2012, Lujan
et al 2008, 2012, Silva et al 2008). In this study, we
assumed that diffusion-weighted MRI (DWI) could be
used to estimate the fibre structures of major WM tracts.
These connectivity estimations based on the deterministic
scheme (Jiang et al 2006) were used to examine the
influence of the three considered activating functions (λEP,
λ2∂EP/∂l—equation (10) and λ(&EP/2) e−|l|/λ—equation
(11)) on membrane (de-/hyper-) polarization. The fibres were
defined along the superior (start of tract)–inferior (end of
tract) frame of reference. By comparing activating functions
across exemplary montages along selected fibre tracts, we
intended to access (in principle) whether representations of
neuro-polarization (instead of simply electric field) provide
further insight into montage selection (figure 5, supplementary
figure 1 (available from stacks.iop.org/JNE/11/036002)) and
whether the inclusion of additional modelling complexity
based on neuronal morphology increases the clinical utility
of computational models.

In this study (inter-montage) variations in the activating
function (λEP) and its associated functions (equations (10) and
(11)) were assessed based on the orientation of the induced
electric field (derived from full anisotropic models) relative
to the fibre architecture and conductivity variations. In the
considered HD-montages (figure 5), the left corticospinal tract
exhibited the maximum membrane polarization (λEP), ranging
from 40 µV (m1) to 67 µV (m2) (figure 5, columns 2 and 6).
For the conventional montage m3, the left corticospinal tract
exhibited the maximum polarization (hyper/de) of 115 µV
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Table 7. Ranking based on the selected regions of interest.

Isotropic Model with only skull Model with only Model with both non-cortical
Montage model and muscle anisotropy brain anisotropy and brain anisotropy

Emedian (mV m−1)

ROI-M1

m1 76.1 33.5 75.4 33.1
m2 70.4 36.9 69.3 36.8
m3 135.9 74.4 134.2 73.4

ROI-Contralateral M1
m1 9.1 7.5 8.7 7.4
m2 18.4 13.6 17.9 13.5
m3 110.6 71.3 112.4 72.4

ROI-SMA
m1 29.0 16.0 29.6 16.4
m2 41.2 23.4 41.4 23.5
m3 202.0 104.6 210.1 108.7

and over all genu of corpus callosum displayed the maximum
membrane polarization (λEP) of 565 µV (supplementary
figure 1 (available from stacks.iop.org/JNE/11/036002),
column 2). For the HD-montage m1, the strongest de-/hyper-
polarization associated with an abrupt change in EP (λ2∂EP/∂l)
and discontinuity in tissue conductivity (λ(&EP/2) e−|l|/λ)
was traced along the stretches of the left corticospinal tracts
and the medial of corpus callosum, respectively (figure 5,
columns 3 and 4). For the HD-montage m2, the right
corticospinal tracts showed the highest strength of membrane
polarization due to an abrupt change in EP (λ2∂EP/∂l) and
medial of corpus callosum was associated with maximum
de-/hyper-polarization due to conductivity variations (figure 5,
columns 7 and 8). For the bi-cephalic montage m3, genu
of corpus callosum displayed the maximum field variation
associated with a strong jump in EP and discontinuity in tissue
conductivity.

Using single fibre analysis, the influence of electrode
montage (electric field orientation) and tissue conductivity
variation was further explored. The selected fibre was from
the L-CST. The magnitude of the induced electric field,
activating function (λEP), derivative of the activating function
(λ2∂EP/∂l), modulation function associated with conductivity
profile (λ(&EP/2) e−|l|/λ), fractional anisotropy (FA) and
electrical conductivity profile were traced along the path
of the selected fibre (figure 6). Comparing the EP profile
along the selected fibre, under the selected montages, it was
observed that the strength and possible locations of de-/hyper-
polarization (λEP and λ2∂EP/∂l) were highly sensitive to the
orientation of the induced electric field (E) with respect to the
fibre path. Similarly, variations in FA and conductivity plots
highlighted the influence of tissue conductivity in shaping the
neuromodulation (λ(&EP/2) e−|l|/λ).

Finally, to analyse the contribution of axonal/fibre bend
in regulating de-/hyper-polarization, artificial bends were
introduced (at the boundary of GM-WM) on selected fibres
of the L-CST (figure 7). It was assumed that these fibres
tend to project normal to the local WM boundary. In the
presence of a uniform (at mesoscopic scale) electric field (E),
an abrupt change in fibre path caused variations in the strength
of EP. For HD-montages m1 and m2, variations in EP and

Table 8. Percentage differences in EP along the selected fibres.

Montage m1

Calculation points along
the fibre pathways

Comparison (percentage difference) 5 mm 10 mm 15 mm

f2–f1 48.1 9.9 1.5
f3–f1 27.2 7.7 14.9
f4–f1 29.9 3.1 17.5
f5–f1 51.4 0.5 9.4

Montage m2
f2–f1 3.0 5.2 3.1
f3–f1 14.2 9.9 3.4
f4–f1 25.8 20.3 11.1
f5–f1 5.6 0.3 1.3

its gradient (λ2∂EP/∂l) due to the artificially induced bends
were predicted (figure 7). Since each fibre tract displayed a
unique orientation with respect to the induced electric field
(E), each fibre exhibited a distinctive strength and direction
of the gradient of |EP|. This observation concurs with the
findings of Kabakov et al (2012). For example, the same
fibres in montages m1 and m2 displayed different responses
(λEP and λ(&EP/2) e−|l|/λ) owing to the unique distribution
patterns of the induced electric field. For the selected HD-tDCS
montages, percentage differences in EP along five selected
fibres at three equally spaced points were calculated (table 8).
Compared to the EP of fibre 1 (f1), under both HD-montages,
the percentage differences were recorded in the range 0.3–
50%. These variations in activating functions signify the role of
neuronal morphology in deciphering the locus of modulation.
As observed from the considered montages, the maximum
of field strength and associated activating functions were
not always located directly underneath the anodes and such
a prediction is not possible by just relying on scalar field
maps. Neuro-navigation scheme based on fibre tractography
would be highly significant to optimize tDCS dose parameters,
especially in modulating deep brain regions associated with
migraine and tinnitus pathophysiology (Dasilva et al 2012,
Parazzini et al 2012a).
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Figure 5. Montage specific behaviour of induced electric field E and stimulation parameters λEP, λ2∂EP/∂l and λ(&EP/2)e−|l|/λ across
(a) left corticospinal tracts, (b) right corticospinal tracts, (c) medial of corpus callosum, (d) genu of corpus callosum and (e) splenium of
corpus callosum under HD montages m1 and m2, respectively (λ = 1 mm). The induced electric field was obtained from the anisotropic
(non-cortical and brain) models.

4. Discussion

The objective of this study was to consider when additional
imaging and modelling complexity (cost) results in predictions
that have distinguishing clinical values. As such, we note that
the montages selected were exemplary and the metrics for
analysis and scoring are not proposed as definitive—indeed

variations in modelling methods further emphasize the need
for vigilance in valuing complexity. Our discussion of the
broader relevance of this work thus includes (1) general points
on modelling details and approaches, illustrating DTI/fibre
tractography, (2) consideration of the cost (time and resources)
of complexity and, (3) balance against a paradigm we proposed
for evaluating additive clinical value of complexity.
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Figure 6. Single fibre level investigation using the projection of induced electric field ‘E’, stimulation parameters λEP, λ2∂EP/∂l and
λ(&EP/2) e−|l|/λ, fractional anisotropy index ‘FA’ and conductivity distribution along the selected fibre (a-m1 and b-m1) under HD-montage
m1, (a-m2 and b-m2) for HD-montage m2 and (a-m3 and b-m3) for bi-cephalic montage m3. In each section (m1, m2 and m3), sub-part
(a) illustrates EP along the selected fibres of left cortico-spinal tract and (b) highlights the variations in field parameters, FA and anisotropic
conductivity along the selected fibre (λ = 1 mm).

4.1. Improvement in predictive modelling by incorporating
tissue anisotropy and fibre tractography

The results of this study emphasize that the sites and strength
of the induced E-field are highly sensitive to the variations
in the distance between the electrodes, the electrode sizes
and arrangements (configurations), and the relative position
of electrodes (both anode and cathodes) with respect to the
ROI (Bikson et al 2010, Datta et al 2011, Shahid et al
2014). Brain anisotropic conductivity could facilitate regional
field enhancement or attenuation and the intensity of such
a variation depends upon the degree of alignment between
the induced current and the local conductivity profile. In
general, skull anisotropy causes a shunting effect, leading
to a reduction in the strength of the induced E/J in the
brain and sub-cortical regions (Bai et al 2012, Shahid et al
2012, Suh et al 2012). In HD-tDCS montages, high electric
field regions were restricted by the outer electrode rings.
The close proximity of return electrodes, the shunting effect
of skull directional conductivity and local variations in the
thickness of superficial layers, all corroborated high values of
RE and RDM, when compared to the conventional montage

(tables 3–5). It is imperative to understand that the neural
response to the induced E-field is not only dependent
on the strength of the induced field, but also on the
electrophysiological parameters, morphology and orientation
of neurons relative to the induced electric field. To estimate
the impact of neural orientation on the site and strength of
modulation, the DTI information used in the conductivity
estimation was employed to perform fibre tracking on the
selected ROIs. Such information is vital to understand the
orientation specificity of different electrode montages.

In this study, we have tried to address the importance
of anisotropic electric conductivity associated with various
regions of the head model using clinically available modalities.
The emphasis has also been laid on the best practice to use these
modalities to translate the strength and spatial distribution
of the electric field from spatial plots to three-dimensional
fibre tracts. This translation is quite significant to address
the issue of current polarity and neuromodulation along the
major fibre tracts of the white matter. Thus, in translating
prediction of current flow to polarization (as a first step towards
predicting neuromodulation), the role of realistic conductivity
distribution should not be overlooked. Additionally, inclusion
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(a)

(b)

(c)

(d)

Figure 7. Behaviour of stimulation parameters λEP and λ2∂EP/∂l in the presence of artificial bends (λ = 1 mm). (a) and (b) montage m1,
(c) and (d) montage m2.
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of brain anisotropy and fibre tractography can further extend
our understanding of stimulus influence from particular ROI
to brain functional connectivity and neural connections (Antal
et al 2011, Polania et al 2012, Zheng et al 2011).

4.2. Clinical costs/benefits for incremental model complexity:
evaluating cost

With endless room for increased modelling complexity
and precision, the pivotal question, which has rarely been
addressed, is the potential clinical utility of incorporating such
model complexities versus the cost involved. When do the
clinical benefits of including such intricate details justify the
issues such as computational costs, scan time and pre-/post-
processing time etc. First, we need to consider the technical and
clinical cost in predicting current flow, then the value in context
of current clinical practise and thirdly, the incorporation of
multi-scale analysis.

Regardless of approach and complexities, all forward
models estimate current flow during stimulation. First,
even before considering the value of complexity, the
field variations associated with segmentation errors and
conductivity assignment must be considered. These errors,
if not properly mitigated, could be much higher than
those associated with anisotropy. Errors related to tissue
misclassification or conductivity assignment are important;
however, they should not impede the improvements in other
fields of predictive modelling. Importantly, our consideration
of cost is based on incremental effort over baseline tissue
classification. Secondly, additional complexity does not
guarantee increased accuracy, for example, we recently
showed significant differences in the methods of modelling
WM anisotropy (Shahid et al 2013). We assume that the
rational inclusion of anisotropy will tend to increase the model
accuracy to some degree.

An important step in the incorporation of brain anisotropy
in head models requires the acquisition and post-processing
of DTI sequences. On modern scanners, for instance, a
Jones20 DTI sequence with 1.85 mm isotropic DTI resolution
takes about 8 min (extra acquisition time) (Jones et al
1999). Similarly, the post-processing of DWI, which involves
steps such as artefact removal (due to eddy currents and
subject motion), reorientation of gradient directions after
the affine registration (required after performing the artefact
removal) (Leemans and Jones 2009), EPI artefact removal
(susceptibility artefacts) (Ruthotto et al 2012), calculation of
diffusion parameters (eigenvalues, eigenvectors and fractional
anisotropy indices), co-registration of tensor maps to high-
resolution scalar volumes and orientation correction due to
co-registration, altogether require no more than 3–5 min
(Ruthotto et al 2012). The translation of the diffusion tensor
to conductivity tensor can take an additional 1–2 min. The
main bottleneck in current forward modelling schemes is the
segmentation of scalar volumes, which can take from a few
minutes (automated but unreliable) to a few days (manual
or semi-automated segmentation). So adding complexity in
terms of diffusion tensors does not add much relative time
in pre-processing; on the other hand, it does add value by

redefining the local current paths in the volume conductor
model. More advanced conductivity-based refinements such as
incorporation of HARDI or DSI schemes in volume conductor
models are, at the moment, practically not feasible in clinical
environment. Based on the study of Hagmann et al (2006), the
acquisition time of 30 axial slices of 3 mm thickness would be
between 10 and 20 min for HARDI (b >1000 and number
of measurements >60) and 15 and 60 min for DSI (b >

8000 and number of measurements >200). However, 3 mm
thickness is too coarse to extract any meaningful information.
Usually, in practice 2 mm slice thickness is preferred; however,
such complex acquisitions will end up in substantially larger
datasets and acquisition time in hours, which is clinically
not feasible. Thus, the cost of complexity may largely be a
clinical study burden, especially if individualized scans are
desired.

Another argument against the increase in model
complexity (increased mesh density and anisotropy) is
the increase in computation load (Kybic et al 2005, Plis
et al 2007, Fuchs et al 2007). The computational cost is
highly solver dependent. Wolters (2003) demonstrated that
for a fixed accuracy rate, the computation time for CG
pre-conditioned by Jacobi increased from 650 iterations
(isotropic) to 850 iterations (anisotropic), whereas, CG pre-
conditioned by AMG maintained 15 iterations in both isotropic
and anisotropic solutions. Hence, with appropriate pre-
conditions the computational load margin between isotropic
and anisotropic simulations can be reduced significantly
(Rullmann et al 2009). Evidently, the actual computational cost
depends on available technology and resources, and it seems
reasonable to speculate these will become less burdensome
in the next few years, even without innovation in specialized
algorithms (Dmochowski et al 2011).

An increasingly complex modelling approach may be
considered to have incremental clinical value if it either
prospectively informs clinical dose or retrospectively informs
study interpretation (which brain regions were targeted).
While evidently changing the model will change the resulting
predictions, if these changes do not influence clinical practise
then their value is purely academic. It is therefore incumbent
to consider exactly how modelling may influence clinical
practise.

A priori, we assume that added detail/complexity
will enhance model precision and, if done rationally,
model accuracy (Bikson et al 2012b, 2012c). Although an
engineering group can devote extended resources and time to
a ‘case’ modelling study, the myriad of potential electrode
combinations (dose) and variation across a normal head
(Datta et al 2012) and pathological heads means that in
clinical trial design the particular models will likely now be
solved. Moreover, while ‘different models will yield different
predictions’ practical dose decision is based on a clinical study
specific criterion: ‘a meaningful clinical difference’. We thus
consider two clinical applications of modelling. (1) Deciding
across montages—namely which montage is expected to
achieve the optimal clinical outcomes in a given subject or
on average across subjects; (2) deciding on dose variation
across subjects—namely if and how to vary dose based on the
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subject specific anatomy. We focus here on the first clinical
application and on the question of if added complexity in
the model, associated with increased computational cost per
simulation, is clinically warranted. The second application,
we did not address specifically here because current clinical
practice does not individualize dose, limited in part by the
cost associated with collecting and processing even the most
basic individual models (e.g. without anisotropy). However,
the methods we develop are equally applicable to this second
application. It is further necessary to consider if the clinician is
concerned with optimizing (a) intensity at the target (maximum
current at the target regardless of overall brain current flow)
or/and (b) focality at the target (intensity at the target relative
to other brain regions). Consideration of intensity or focality
may lead to fundamentally different ‘best’ dose (Dmochowski
et al 2011). In the first application, the clinician will compare
different montages for their intensity and/or targeting of a
brain region. Therefore, additional complexity and detail is
only clinical meaningful if it results in a different selection of
optimal montage based on either intensity or focality criterion.

Finally for targeting, based on current practices, a clinician
is typically not concerned with minutia of current flow patterns,
but on a general ranking of which regions are more or less
activated. In this paper, clinical regional ranking has thus
contrasted with statistical indices. Our overall preposition,
developed in this paper is thus: because in clinical trial design
modelling complexity costs time and resource, it is justified
only when the selection of the optimal montage based on either
intensity and/or targeting (regional ranking) changes.

4.3. Limitations

Validation of forward solutions for EEG, TES and TMS
against clinical data remains a challenge. Recently, some
efforts have been made for the validation of EEG forward
modelling (Bangera et al 2010), TES (Datta et al 2013,
Edwards et al 2013) and TMS (Opitz et al 2013). These
direct physiological validation schemes support the forward
modelling paradigms. Since these volume conductor models
obey Maxwell’s equations (laws of physics), the main aspects
of their assessments do not change, even though (within the
bounds of the defined boundary conditions) these models may
provide different outcomes.

In predictive modelling, anatomical features and tissue
dielectric properties play a crucial role in defining the resulting
electric field. Most often model-based brain stimulation
studies rely on a single subject dataset, as under similar
stimulation parameters, the inter-subject trends in magnitude
and topographic variations exhibit similar behaviour (Parazzini
et al 2012b, Shahid et al 2013). Thus, it is possible to postulate
on the validity of single subject results across multiple subjects.

In TES, the relatively low conductivity of skull plays a
crucial role in defining the magnitude and distribution of field
parameters. Human skull is composed of three distinguishable
regions, spongoasa, enclosed in compacta bone and the
idea of skull anisotropic electrical conductivity behaviour
is associated with its layered composition. Since it is not
easy to classify the diploe region of skull by using MRI

data alone, therefore, most of the studies in forward head
modelling consider skull as a homogeneous anisotropic region
(Wolters et al 2006, Suh et al 2012) or homogeneous isotropic
domain (Datta et al 2009, Shahid et al 2013). According
to the experiment conducted by Rush and Driscoll (1968),
the ratio of saline conductivity to skull conductivity in the
radial direction varied from 1:50 to 1:300 and 1:5 to 1:40
in the tangential direction. Studies by De Munck (1988),
Marin el al (1998) and Munck and Peters (1993) reported
anisotropic skull behaviour with a conductivity variation of
1:10 (i.e., the conductivity in tangential direction is ten times
the conductivity in radial direction). A more recent study by
Sadleir and Argibay (2007) reported the sub-optimal response
of such schemes. In their opinion, a three-layer isotropic skull
provided close agreement with the in vivo measurements of
skull electrical conductivity. More recently, Dannhauer et al
(2011) reported the significance of local variations in skull
conductivity for EEG forward and inverse solutions. Under
the hypothesis that optimal conductivity values are primarily
dictated by the equivalent radial conductivity of the three-
layered skull, Rampersad et al (2013) suggested the validity
of both anisotropic and isotropic approximation when dealing
with cortical electric field parameters. However, there is no
experimental evidence to support this hypothesis.

Since the idea behind this study was to employ
clinically available modalities, which are used frequently
in physiological examination, therefore, incorporation of
CT scans in head model construction was not considered.
Without the use of CT scans, further improvements in skull
segmentation can be achieved by, perhaps, employing ultra-
short TE (UTE) MRI sequences in the head model construction
(Wang et al 2010).

In this study, activating functions were derived from
the induced electric field (E); therefore, the accuracy and
quality of these results (along the stretches of fibres) are
highly susceptible to numerical errors. The finite element
method provides an approximate solution. In this study, the
convergence criterion was defined by the global error tolerance
of 10−8. So even after the solution has converged, differences
to the actual solution will always remain. In this study, we used
linear basis functions. Higher order basis functions generally
increase numerical accuracy; however, use of higher order
basis functions and increase in mesh density has a significant
effect on overall computational resources (Shahid and Wen
2010). Since there are no analytical solutions of TES available
that deal with complex geometries, therefore, in this study,
we evaluated the accuracy of the solutions by assessing the
variations between the injected current and the return current.

In this study, the fibres were considered unmyelinated and
their morphological response and neural activation dynamics
in the presence of external stimulus were not considered.
At present, there are no computational models that can
realistically simulate the neural response to a weak electric
current. However, using a simplified cortical model, Salvador
et al (2011) reported the electrophysiological response of
various cortical neurons in a uniform E-field. Therefore, the
next logical step would be to incorporate the mathematical
models of neural responses and membrane kinetics in FE
models to identify possible sites of neural excitation.
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In this study, the brain anisotropic conductivity estimation
was carried out using the DTI data under the assumption
that the diffusion tensor is second rank and symmetric. Such
an assumption caused the regions of fibre crossing appear
close to isotropic. The convoluted and inter-crossing branches
of cortical neurons make it impossible to estimate actual
fibre paths in low FA regions. To improve the conductivity
estimation, it would be imperative to overcome the limitation
of fibre crossing by using, perhaps, the orientation distribution
function (ODF), which can be used to characterize the
diffusion distribution (Yeh and Tseng 2011). Diffusion data
may be acquired using high-resolution diffusion imaging
scheme (Tuch et al 2002) or diffusion spectrum imaging (DSI)
(Wedeen et al 2008). Alternatively, model-free reconstruction
methods such as Q-ball (Tuch 2004) with DSI can be used to
estimate the diffusion probability and diffusion ODFs. Since
the fibre tracking performed in this study was based on the DTI
data, therefore, it was only possible to track fibres in the regions
of high FA. That is why the tracking was limited to the regions
of FA > 0.2. However, by employing the probabilistic tracking
rather than the deterministic scheme, it should be possible to
deduce reliable information in low FA regions (Behrens et al
2003). Such a scheme can extend the scope of this study in
low FA regions and would be able to provide the much-needed
neural interaction information in the superficial regions of the
brain.

Appendix A. Statistical indices used to estimate
field variations under the considered montages

RDM is the measure of topographic variation (Meijs et al
2002). The minimum error corresponds to 0 and the maximum
error corresponds to an RDM of 1. RDM is insensitive to
the scaling variations among the datasets being compared,
thus making it an ideal choice for comparison of distribution
differences among field parameters:

RDM =
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n∑
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Residual error (RE) (Gujarati 2003):

RE =

√√√√
∑n

i=1

(
EBASELINE

i − EVAR
i

)2

∑n
i=1

(
EVAR

i

)2 , (A.2)

where EBASELINE
i is the baseline parameter (electric field

of isotropic head models) and EVAR
i represents the same

field parameter (electric field of anisotropic head models)
of different head models considered in the comparison. ‘i’
represents the total number of data points (elements of a
particular subdomain or ROI).

Appendix B

Table B1. Voltages (in mV) applied/adjusted in different
simulations to achieve the desired injected current (1 mA). In all
cases, the initial voltage applied was 1 V.

Models m1 m2 m3

Isotropic model 639.74 586.44 182.07
Model with skull and muscle of 651.51 595.73 233.11
mastication anisotropy
Models with brain anisotropy 639.73 586.44 182.32
Models with both non-cortical 651.52 595.73 233.19
and brain anisotropy
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