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Abstract
Rational development of transcranial current stimulation (tCS) requires solving
the ‘forward problem’: the computation of the electric field distribution in the
head resulting from the application of scalp currents. Derivation of forward
models has represented a major effort in brain stimulation research, with
model complexity ranging from spherical shells to individualized head models
based on magnetic resonance imagery. Despite such effort, an easily accessible
benchmark head model is greatly needed when individualized modeling is
either undesired (to observe general population trends as opposed to individual
differences) or unfeasible. Here, we derive a closed-form linear system which
relates the applied current to the induced electric potential. It is shown that in the
spherical harmonic (Fourier) domain, a simple scalar multiplication relates the
current density on the scalp to the electric potential in the brain. Equivalently,
the current density in the head follows as the spherical convolution between
the scalp current distribution and the point spread function of the head, which
we derive. Thus, if one knows the spherical harmonic representation of the
scalp current (i.e. the electrode locations and current intensity to be employed),
one can easily compute the resulting electric field at any point inside the
head. Conversely, one may also readily determine the scalp current distribution
required to generate an arbitrary electric field in the brain (the ‘backward
problem’ in tCS). We demonstrate the simplicity and utility of the model with
a series of characteristic curves which sweep across a variety of stimulation
parameters: electrode size, depth of stimulation, head size and anode–cathode
separation. Finally, theoretically optimal montages for targeting an infinitesimal
point in the brain are shown.

(Some figures may appear in colour only in the online journal)

0031-9155/12/206459+19$33.00 © 2012 Institute of Physics and Engineering in Medicine Printed in the UK & the USA 6459

http://dx.doi.org/10.1088/0031-9155/57/20/6459
mailto:jdmochowski@ccny.cuny.edu
http://stacks.iop.org/PMB/57/6459


6460 J P Dmochowski et al

1. Introduction

Transcranial current stimulation (tCS) is the application of weak currents to the surface of
the scalp to elicit modulation of neural activity (Nitsche and Paulus 2000, Priori 2003). One
may argue that clinical findings of the therapeutic benefits of weak scalp currents (Nitsche
et al 2008, Brunoni et al 2011) are outpacing the pursuit of a rigorous understanding of tCS
mechanisms of action as well as a consolidated model of transcranial volume conduction.

To develop rational stimulation paradigms, it is pivotal to relate the distribution of the
applied scalp currents to the resulting electric fields in the brain. To that end, computational
‘forward’ models of transcranial electrical brain stimulation are standard tools to relate
externally controlled dose (electrode montage, shape, current/voltage) (Peterchev et al 2011)
to the resulting neural current distribution which then yields cognitive/behavioral changes. The
relationship between dose and brain current is not trivial, and as such, models allow rational
experimental and clinical design when specific brain regions are to be targeted or avoided.
Because of the limitations of other approaches, such as phantoms (where tissue complexity
cannot be accounted for) and imaging (where functional changes cannot be directly related to
current flow), forward models, which are based on well-established physics (e.g. Ohm’s law),
are the standard tool in such an analysis (Miranda et al 2006, Holdefer et al 2006, Wagner
et al 2007, Datta et al 2009). The complexity of forward models ranges from concentric
spherical shells to high-resolution magnetic resonance imaging (MRI)-based individualized
models, but regardless of complexity the purpose of these models remains to provide guidance
and analysis to clinical protocols. Even as increasingly detailed models have been developed,
simulations using concentric spheres have been used to explore basic dose approaches. It
is precisely because individual anatomical idiosyncrasies influence current flow that spheres
provide a basis for general exploration. However, finite-element (FE) numerical approaches
are required for anatomically detailed models, either numerical or analytical approaches can
be used with spheres. Numerical simulation requires the case-by-case analysis, significant
computational resources and long computational times; on the other hand, analytical solutions
offer the promise of an immediate solution which can be evaluated on any region of support
(not just individual mesh points), exploration across the parameter space, derivation of general
rules (trends) and the existence of a freely-available, benchmark forward model.

Previous analytical effort by Stecker (2005) into solving the forward model in tCS has
yielded complex (lengthy) expressions not amenable to easy dissemination or implementation.
More importantly, the frequency–domain linear system formulation of the problem, which
drastically simplifies the solution, has gone unrecognized. Here, we formulate a straightforward
linear system relating the applied scalp current to the resulting electric potential in the head. We
operate in the spherical harmonic domain (i.e. spatial frequency) which leads to a scalar transfer
between the scalp current density and brain electric potential. Moreover, by transforming the
solution back to the space domain, we derive the point spread function (PSF) of the human
head, which represents the ‘response’ of the head to a unit-mass point of input current.

We demonstrate the simplicity and utility of the proposed model by conducting an analysis
of the effect of electrode size, followed by a comparison of the induced electric field in the adult
brain versus that of a child, as well as an investigation into the role of anode–cathode separation
on the resulting current flow. Additionally, we arrive at an elegant solution to the ‘backward
problem’ in tCS: given a desired electric field in the brain, to derive the corresponding scalp
current density. It is shown that in the asymptotic limit (infinite current), any electric field which
possesses a spherical harmonic expansion may be physically realized by a corresponding scalp
current density distribution which may be computed with our model. To that end, we compute
the idealized montage for the case of a delta-Dirac function (an electric field which has a
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nonzero value only at a single point in the brain), representing the optimal montage for focal
stimulation.

Our overall goal is to present a rigorous yet accessible model that can serve as a benchmark
for future effort. For readers that would prefer to omit the mathematical development while still
absorbing the main results, we suggest to browse the figure captions and then continue directly
to the discussion, which summarizes the key results and discusses issues such as the relationship
of spherical models to its complex MRI-based counterparts.

2. Problem formulation: quasi-static volume conduction

Consider a homogeneous volume conductor V . Under the ‘quasi-static’ assumption—Ohm’s
law is valid and one can ignore electromagnetic induction (Nunez and Srinivasan 2006)—the
electric potential inside V is governed by Laplace’s equation (Jackson 1975, Griffiths 1999):

∇2V = 0, (1)

where ∇2 is the Laplacian operator. In order to determine a unique solution to Laplace’s
equation within the volume of interest, one must specify either the potential on the boundary
encasing the volume (Dirichlet boundary condition), or its normal derivative on the boundary
(Neumann boundary condition). When encountering non-homogeneous conductors, such
as the human head, one exploits continuity of electric potential and current across region
boundaries to build up solutions for each homogenous section of the conductor. In the
forthcoming tCS model, the boundaries that we will consider are spherical. Thus, it is
convenient to rewrite Laplace’s equation (1) in spherical co-ordinates (Jackson 1975, Griffiths
1999):

∇2V = 1
r2

∂

∂r

(
r2 ∂V

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂V
∂θ

)
+ 1

r2 sin2 θ

∂2V
∂φ2

= 0, (2)

where r, θ and φ denote the range, elevation and azimuth, respectively, in a spherical co-
ordinate system. While (2) may at first glance appear more complex than its Cartesian
counterpart, it has a well-known general solution. Using the method of separation of variables,
the solution is given by a linear combination of the spherical harmonics (Jackson 1975):

V (r, θ ,φ) =
∞∑

l=0

l∑

m=−l

(Almrl + Blmr−(l+1))Ylm(θ ,φ), (3)

where Alm and Blm denote the weighting coefficients of the basis functions

Ylm(θ ,φ) =

√
2l + 1

4π

(l − m)!
(l + m)!

Plm(cos θ ) eimφ, (4)

which are the complex-valued spherical harmonics, and Plm is the associated Legendre
polynomial of order l and degree m.

2.1. Spherical Fourier transform

Much like any function defined over the real numbers may be expressed in terms of complex
exponentials, any function f defined on the surface of a sphere of radius R may be written as
a linear combination of the spherical harmonics:

f (θ ,φ) =
∞∑

l=0

l∑

m=−l

FlmRlYlm(θ ,φ), (5)
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where the coefficients of the expansion are computed according to

FlmRl =
∫ 2π

0

∫ π

0
f (θ ,φ)Y ∗

lm(θ ,φ) sin θ dθ dφ, (6)

where ∗ denotes complex conjugation. On the unit sphere, the Rl terms disappear from (5)
and (6).

In the following section, we employ the spherical Fourier transform to derive an analytical
solution to the forward and backward problems in tCS.

3. Linear system model and solution

We employ a four concentric spherical shell model to derive an analytical relationship between
the applied scalp current and the resulting electric potential in the head. In order of distance
from the origin, the concentric shells model the brain V1, the cerebrospinal fluid (CSF) V2,
the skull V3 and the scalp V4. The radii of the shells are denoted by Ri, i = 1, . . . , 4; the
conductivities are denoted by σi, i = 1, . . . , 4. The general solution for Vi is written as

Vi(r, θ ,φ) =
∞∑

l=0

l∑

m=−l

(
A(i)

lmrl + B(i)
lmr−(l+1)

)
Ylm(θ ,φ), i = 1, . . . , 4, (7)

with B(1)
lm = 0 ∀l, m as V1 includes the origin1. We are thus left with seven unknowns for

each spherical harmonic lm. By differentiating (7) with respect to r, the radial derivative of
potential in each shell follows as

∂Vi

∂r
=

∞∑

l=0

l∑

m=−l

[
lA(i)

lmrl−1 − (l + 1)B(i)
lmr−(l+2)

]
Ylm(θ ,φ), i = 1, . . . , 4.

Owing to the continuity of the normal component of the current and the electric potential
along tissue boundaries, we have the following (six) boundary conditions:

Vi(Ri, θ ,φ) = Vi+1(Ri, θ ,φ) i = 1, 2, 3

σi

(
∂Vi

∂r

)

r=Ri

= σi+1

(
∂Vi+1

∂r

)

r=Ri

i = 1, 2, 3.

To derive the final boundary condition, we make use of the fact that in tCS, the normal
component of the current density on the scalp, denoted here by J(θ ,φ), is specified fully by
the employed montage. Moreover, we employ the quasi-static expression for the electric field
E = −∇V to express the radial component of electric field E on the scalp as

E(φ, θ ) = −∂V4

∂r
. (8)

Substituting Ohm’s law J = σE into (8) yields

J(θ ,φ) = −σ4

(
∂V4

∂r

)

r=R4

. (9)

As J(θ ,φ) is defined on the surface of a sphere, it has a spherical Fourier representation:

J(θ ,φ) =
∞∑

l=0

l∑

m=−l

JlmRl
4Ylm(θ ,φ), (10)

1 In order for the terms B(1)
lm r−(l+1) to remain finite at r = 0, B(1)

lm must be zero.



The PSF of the human head and its implications for tCS 6463

with appropriate spherical harmonic coefficients Jlm. Due to the orthonormality of the spherical
harmonics, all seven boundary conditions may be expressed in the frequency domain:

A(i)
lmRl

i + B(i)
lmR−(l+1)

i = A(i+1)
lm Rl

i + B(i+1)
lm R−(l+1)

i , i = 1, 2, 3,

σi
[
lA(i)

lmRl−1
i − (l + 1)B(i)

lmR−(l+2)
i

]
= σi+1

[
lA(i+1)

lm Rl−1
i − (l + 1)B(i+1)

lm R−(l+2)
i

]
, i = 1, 2, 3,

−σ4
[
lA(4)

lm Rl−1
4 − (l + 1)B(4)

lm R−(l+2)
4

]
= JlmRl

4, (11)

and further written in matrix form as

Jlm = HlVlm, (12)

where

Hl

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rl
1 −Rl

1 −R−(l+1)
1 0 0 0 0

σ1lRl−1
1 −σ2lRl−1

1 σ2(l + 1)R−l−2
1 0 0 0 0

0 Rl
2 R−(l+1)

2 −Rl
2 −R−(l+1)

2 0 0

0 σ2lRl−1
2 −σ2(l + 1)R−l−2

2 −σ3lRl−1
2 σ3(l + 1)R−l−2

2 0 0

0 0 0 Rl
3 R−(l+1)

3 −Rl
3 −R−(l+1)

3

0 0 0 σ3lRl−1
3 −σ3(l + 1)R−l−2

3 −σ4lRl−1
3 σ4(l + 1)R−l−2

3

0 0 0 0 0 −lσ4R−1
4 (l + 1)σ4R−2l−2

4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Vlm =
[
A(1)

lm A(2)
lm B(2)

lm A(3)
lm B(3)

lm A(4)
lm B(4)

lm

]T

and

Jlm = [0 0 0 0 0 0 Jlm]T .

The linear system of (12) relates the current density on the scalp (Jlm) to the electric potential
in the head (Vlm) via the matrix Hl , which is characterized by the geometry of the head and
the electrical conductivities of the comprising tissues. Indeed, Hl is the transfer function of
the head, specified in the spherical Fourier domain.

Equation (12) is a reflection of the physics governing the flow of current in tCS: the applied
currents and resulting electric potentials are coupled by the linear system Hl . It is interesting
to point out, however, that given a vector of potentials in the head (i.e. Vlm), multiplication by
the transfer matrix Hl only yields a valid solution for the scalp currents if all elements of the
corresponding vector HlVlm, with the exception of the last element, are zero.

More importantly, Hl is a full-rank matrix and thus possesses an inverse which we denote
by Gl = H−1

l . We then obtain the following relation:

Vlm = GlJlm. (13)

But Jlm only has one nonzero element: this means that, remarkably, the electric potentials
inside the head may be written as a scalar multiple of the input current:

brain: A(1)
lm = [Gl]1,7 Jlm

CSF: A(2)
lm = [Gl]2,7 Jlm, B(2)

lm = [Gl]3,7 Jlm

skull: A(3)
lm = [Gl]4,7 Jlm, B(3)

lm = [Gl]5,7 Jlm

scalp: A(4)
lm = [Gl]6,7 Jlm, B(4)

lm = [Gl]7,7 Jlm

(14)

where [Gl]i, j has been defined as the element in the ith row and jth column of Gl . In the
frequency domain, the relationship between the applied current density and the resulting
electric potential in the brain is given by a simple scalar multiplication. This greatly facilitates
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Figure 1. By expressing the applied scalp current in terms of orthonormal basis functions and
deriving the head frequency response (Gl ), the resulting current flow in the brain follows as a linear
combination of the spherical harmonics Ylm(θ ,φ).

the computation of the electric field given an electrode montage—the ‘forward problem’ in
tCS.

The existence of an inverse for Hl also ensures that we can compute the scalp current
distribution corresponding to a given electric potential in the brain:

Jlm =
A(1)

lm

[Gl]1,7
, (15)

which elegantly provides an instant solution to the ‘backward problem’ in tCS: the
determination of the electrode montage which generates an arbitrary desired electric field.

Figure 1 illustrates the convenience of working in the spherical harmonic domain: the
applied scalp current is expressed as a linear combination of orthonormal basis functions
Ylm(θ ,φ). By multiplying each frequency component with the corresponding head transfer
function [Gl]1,7 (depicted by Gl in the figure) and then summing across all harmonics, we
obtain the electric potential generated inside the brain.

4. Results

Below we demonstrate the utility of the results derived above.

4.1. Spatial frequency response of the head

The frequency response of a temporal filter represents the gain presented to a temporal sinusoid;
similarly, the coefficients [Gl]i7, i = 1, . . . , 7, convey the spatial frequency responses between
the current density on the scalp and that inside the head. A subtle but important point is that
the scalp current and current through the skull, CSF and brain reside on spheres of different
radii. For example, to relate the applied scalp current to the radially oriented current density
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in the brain, we have the following:

−σ1

(
∂V1

∂r

)

r=R1

= −σ1

∞∑

l=0

l∑

m=−l

A(1)
lm lRl−1

1 Ylm(θ ,φ),

J(θ ,φ) =
∞∑

l=0

l∑

m=−l

JlmRl
4Ylm(θ ,φ), (16)

where the radial derivative of V1 resides on a sphere of radius R1, while J exists on a sphere
of radius R4. Thus, in order to compute a meaningful transfer (i.e. for the transfer to reflect a
ratio of coefficients pertaining to the same basis function) between the applied scalp current
and the current on the brain surface, one should compute

scalp–brain: G(1)
l ! −σ1A(1)

lm lRl−1
1

JlmRl
4

=
−σ1 [Gl]1,7 lRl−1

1

Rl
4

. (17)

Similarly, we define the following:

scalp–CSF: G(2)
l ! −σ2

(
A(2)

lm lRl−1
2 − B(2)

lm (l + 1)R−(l+2)
2

)

JlmRl
4

=
−σ2

(
[Gl]2,7lRl−1

2 − [Gl]3,7(l + 1)R−(l+2)
2

)

Rl
4

,

scalp–skull: G(3)
l ! −σ3

(
A(3)

lm lRl−1
3 − B(3)

lm (l + 1)R−(l+2)
3

)

JlmRl
4

=
−σ3

(
[Gl]4,7lRl−1

3 − [Gl]5,7(l + 1)R−(l+2)
3

)

Rl
4

. (18)

Physically, the coefficients G(1)
l , G(2)

l and G(3)
l represent the gain presented by the head to a

scalp current defined by a spherical sinusoid Ylm(φ, θ ) at the brain, CSF and skull, respectively.
Figure 2(a) displays the spatial frequency responses between the scalp current and the radially
oriented current at the surfaces of the skull, CSF and brain. The responses were computed
by constructing Hl and taking its inverse Gl = H−1

l . The following standard values (Nunez
and Srinivasan 2006) were used for the computation {Ri}4

i=1 = {0.08, 0.081, 0.086, 0.092} m
and {σi}4

i=1 = {0.2, 1.65, 0.001, 0.465} S m−1 and the responses are shown up to a spatial
frequency l = 140 cycles/π . To elucidate the effect of including the CSF layer in the model,
we also computed the frequency responses after setting σ2 = σ1, or by extending the brain to
encompass the space previously occupied by the CSF.

As expected, the scalp–skull frequency response upper bounds the remaining responses.
For all tissues, the transfer function is monotonically decreasing with frequency—indeed, the
human head is a spatial low-pass filter, strongly attenuating input current distributions with
spatial frequencies greater than 5 cycles/π . Note that the classical ‘roll-off’ of the low-pass
filter is sharpest for the brain (0.61 dB per harmonic order) and slowest for the skull (0.29 dB
per harmonic order). The greatest attenuation is posed by the skull, with the response dropping
by 30 dB across the skull at 60 cycles/π . Moreover, the effect of including the thin CSF layer
into the model is significant, adding approximately 13 dB of attenuation at 60 cycles/π .

4.2. PSF of the head

Note that in the frequency domain, the potential in the brain is given by a product of the
applied current and the transfer G(1)

l . Multiplication in the frequency domain corresponds
to convolution in the space domain; indeed, the spherical convolution theorem (Driscoll and
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Figure 2. (a) Frequency responses: the spatial frequency responses between the current density
applied at the scalp and that inside the head. The head is a low-pass spatial filter, strongly attenuating
spherical sinusoids greater than l = 5. (b) Point spread functions: the corresponding PSFs, which
represent the current density inside the head resulting from the application of a unit current at the
surface of the scalp. (c) Intensity and focality: the peaks and FWHMs of the PSFs quantify the
attenuating and blurring effects of the skull and CSF (shown as differences in adjacent bar height),
while elucidating the importance of incorporating CSF in the head model.

Healy 1994) states that the spherical Fourier transform of a convolution of two functions defined
on a sphere is given by a scaled product of their respective spherical harmonic coefficients:

u(θ ,φ) ∗ v(θ ,φ) ⇔ 2π

√
4π

2l + 1
UlVlm, (19)

where ∗ denotes convolution on the sphere. Moreover, we know that the inverse Fourier
transform of a frequency response is the impulse response, or PSF in the case of two
dimensions. Thus, by transforming the transfer functions of (17) and (18) into the space domain
via (5), we may compute the PSF, which here represents the distribution of current density
inside the head resulting from the application of an infinitely large, infinitesimally narrow unit
current on the surface of the scalp at θ = φ = 0.
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Figure 2(b) displays the PSFs corresponding to the surfaces of the skull, CSF and brain—
note that due to the inherent azimuthal symmetry, the PSFs are depicted as a univariate function
of the elevation angle. Moreover, the peaks and angular spreads of the PSFs are shown in
figure 2(c), with the latter quantified in the form of the ‘full-width half-max’ (FWHM), or the
angular spread at which the response drops to half of the peak. We also report the PSFs on the
surface of the brain in the absence of CSF, as described above.

On the surface of the skull, the radial current peaks at 0.45 A m−2 and exhibits a FWHM
of just 10◦. The peak current drops to 0.33 A m−2 and 0.18 A m−2 on the surfaces of the CSF
and brain, respectively, with the corresponding FWHMs rising to 18◦ and 26◦. Thus, despite
the CSF layer consisting of only a 1 mm thickness, its high conductivity results in a large
diffusion of current. Consequently, not including the CSF layer in the model results in errors
of 55% and 22% when estimating the peak current density and FWHM, respectively.

4.3. Modeling the effect of varying electrode size

The effect of electrode size on the resulting stimulation has been the subject of some
investigation (Nitsche et al 2007, Miranda et al 2009). Intuitively, one expects the focality of
the induced electric field to be greater when passing the applied current through electrodes
of a limited spatial extent (this effect was verified indirectly in (Nitsche et al 2007)). On
the other hand, the perceived skin sensation is amplified by using electrodes with a reduced
surface area (Minhas et al 2010). To rigorously quantify the effect of the electrode size on the
resulting electric field in the brain, we utilized the relationships derived above to compute a
set of forward models corresponding to varying electrode sizes. We considered the classical
motor montage targeting the primary motor cortex (M1), with the anode at electrode C3 of
the standard 10/10 system for electrode placement (Chatrian et al 1985), and the return over
the contralateral supraorbital region (electrode FP2). This montage is often referred to as
‘M1-SO’. We computed the spherical harmonic coefficients of a spherical ‘cap’ (see the
appendix) which represents a circular electrode with finite surface area, which ranged here
from 5 to 25 cm2. For all electrode sizes, the current density was selected to equalize the total
current delivered to 2 mA. The results are shown in figure 3.

The spherical cap model is depicted in panel A: the angular extent of the nonzero region
(white) was chosen such that the surface area of the electrode matches the desired size. Panel
B displays the electric field magnitude in the brain (radially below the anode) as a function
of depth into the volume. Smaller electrodes lead to an increase in field magnitude below the
anode, with the effect waning as the depth into the brain volume increases: the field intensity
curves converge to a common value at the center of the brain (8 cm depth). For each electrode
size, the peak intensities are shown in panel C. A fivefold reduction in the surface area of
the electrodes results in a 60% increase in the electric field below the anode. From panel
D, it is evident that this increase in field intensity is also accompanied by increased spatial
concentration of the field. Specifically, the FWHM decreases from 66◦ to 39◦ when decreasing
the electrode area from 25 to 5 cm2.

4.4. Modeling the effect of head size

One parameter of relevance and wide variation in the tCS population is head size. For example,
it is important to accurately translate (i.e. scale down) typical adult tCS dosages to the smaller
heads of children and to make reliable predictions of the nature of the electric field induced
by tCS in children. We obtained sample anatomical MRI scans of one adult (male, age 35)
and one child (male, age 12) which were manually segmented into the comprising tissue
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(A) (B)

(C) (D)

Figure 3. The effect of varying electrode surface area on the resulting electric field below the
anode, which is situated above the primary motor cortex. (A) For each electrode size, the total
current delivered is 2 mA and achieved by appropriately selecting the current density applied to
a circular electrode modeled by a spherical cap. (B) Smaller electrodes lead to a higher intensity
(measured directly below the anode), with the effect pronounced on the surface of the brain volume
and waning as depth increases. (C) On the brain surface, a five-fold decrease in electrode surface
area leads to a 60% increase in the electric field magnitude below the anode. (D) Moreover, this
increased intensity is accompanied by greater focality, with a FWHM of 39◦ employing 5 cm2

electrodes, compared to 66◦ at 25 cm2.

types (scalp, skull, CSF, brain). The resulting binary masks were then employed to measure
the thicknesses of the CSF (adult: 3.1 mm, child: 1.3 mm), skull (adult: 4.5 mm, child:
2.3 mm) and scalp (adult: 6.32 mm, child: 5.5 mm) underneath electrode Oz. The radius of
the (spherical) head was computed by fitting the MRI head dimensions to a sphere. From this,
the radius of the brain (adult: 80 mm, child: 73 mm) followed as the total of the scalp, skull
and CSF thicknesses subtracted from the head radius. We then constructed four-shell models
corresponding to the adult and the child. The standard conductivity values stated earlier were
assigned to both head models. We then implemented two popular montages: the classic M1-SO
montage with large 25 cm2 electrodes, and the more focal ‘4×1’ montage (Datta et al 2009)
consisting of 1.13 cm2 electrodes (anode over C3, and cathodes at FC1, FC5, CP1 and CP5,
each carrying a quarter of the return current). For each head and montage, we computed the
forward model corresponding to an anodal current of 2 mA.

Figure 4 depicts the electric field magnitude (radially below the anode) as a function of
depth into the brain (A: M1-SO; B: 4×1). On the cortical surface, the induced field in the
child brain has an intensity approximately double that of the adult in the case of the M1-SO
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(A) (B)

(C) (D)

Figure 4. The electric fields induced by two montages in the heads of an adult and a child. In the
case of the M1-SO montage with large electrodes (A), the electric field magnitude at the surface
of the child brain (directly below the anode) is approximately double that at the surface of the
adult brain. For the more focal 4×1 montage (B), there is a threefold increase in the electric field
induced on the child’s cortical surface. These differences may be attributed to reduced thicknesses
of the skull and CSF layers (in the child), whose effects on current flow are represented by the
corresponding PSFs of the adult (C) and child (D) heads.

(0.65 V m−1 versus 0.31 V m−1). For the 4×1 configuration, there is a threefold increase of the
field magnitude in the child brain relative to the adult (1.8 V m−1 versus 0.6 V m−1). In both
cases, the relative increase in intensity is tapered as one looks deeper into the brain volume.
The amount of current impinging on the brain of the child is thus significantly greater and may
be attributed to proportional decreases in the thicknesses of the skull (4.8% of the head radius
in the adult, 2.8% of the head radius in the child) which attenuates current flow and the CSF
(3.3% and 1.6% of head radius in the adult and child, respectively), which diffuses the current
passed through the skull layer. Indeed, panels C and D depict the PSFs of the adult and child
head, respectively. At the CSF, the child PSF peaks at 0.43 A m−2, compared to 0.26 A m−2

in the adult. On the brain surface, the child PSF exhibits a peak of 0.17 A m−2, compared to
0.07 A m−2 in the adult.

4.5. Modeling the effect of electrode separation

A common belief amongst tCS practitioners is that to maximize current flow in the brain,
one should maximize the separation between the anode and the cathode, as this presumably
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(A) (B)

Figure 5. The effect of the separation between anode and cathode on the radial (A) and tangential
(B) components of the electric field at the target, which is situated directly below electrode Cz,
or the vertex of the brain. Radial current flow is maximized with a maximally distant cathode
(i.e. at Iz). On the other hand, maximally intense tangential current flow is achieved with minimal
separation between anode and cathode (i.e. anode at FCz and cathode at FPz).

minimizes the amount of current shunted through the scalp. Here, we explored the effect
of the separation between anode and cathode on the electric field intensity achieved at the
target, which was assumed to lie at the vertex of the brain—directly below electrode Cz—
without loss of generality. Circular ‘high-definition’ electrodes with a diameter of 12mm were
modeled. We treat the cases of radial and tangential stimulation separately: in the case of a
desired radial current flow, the anode was fixed to Cz, while the cathode was varied along
the midline from position CPz to Iz. This simulation setup was motivated by the findings of
Dmochowski et al (2011), where optimal radial stimulation resulted from placing the anode
directly above the target. On the other hand, it was also shown by Dmochowski et al (2011)
that the optimization of stimulation in the tangential direction leads to the electrodes being
placed on either side of the target. Thus, in the case of desired tangential current flow, the
locations of the electrodes here were chosen such that the target is equidistant to the anode
and the cathode, with the separation between electrodes varying according to Nz/Iz, FPz/Oz,
AFz/POz, Fz/Pz and FCz/FPz.

Figure 5 displays the radial (A) and tangential (B) components of the electric field as
a function of the angular separation between the anode and the cathode. It is immediately
apparent that when desiring radial current flow at the target, one should indeed place the return
electrode at the maximally distant location. Less obvious are the results of panel B, which
conveys that for maximally intense tangential stimulation, the spacing between anode and
cathode should be minimized.

5. Optimization of applied current

The locations of the electrodes are a key parameter in tCS design. Indeed, the ‘backward
problem’—given a desired electric field, to determine the montage which best approximates
that field—has been the subject of recent investigation (Dmochowski et al 2011, Im et al 2008).
In this section, we show how the applied surface current J (θ ,φ) may be optimized to target
a desired brain area. Recall from (13) that given an electric potential distribution specified in
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the frequency domain by A(1)
lm , the scalp current density which generates this potential field is

simply A(1)
lm

[Gl ]1,7
. The resulting montage, assuming that it exists and is finite, yields precisely the

electric field described by A(1)
lm .

Instead of working with the potential, we instead optimize the radial component of the
electric field in the brain at a target depth Ro, which is given by

−
(

∂V1

∂r

)

r=Ro

= −
∞∑

l=0

l∑

m=−l

A(1)
lm lRl−1

o Ylm(θ ,φ). (20)

Ideally, we would like the radial component of the electric field to approximate a delta Dirac
function:

−
(

∂V1

∂r

)

r=Ro

= δ(θ − θo)δ(φ − φo)

sin θ
, (21)

where the denominator is included such that the resulting delta function integrates to one
across the surface of a unit sphere. From (6), it follows that the Fourier transform of (21) is
given by

δlmRl
o = Y ∗

lm(θo,φo). (22)

Connecting (20) to (22), we identify that in order to achieve an idealized electric field with a
focal direction of (θo,φo) at depth Ro, one requires

A(1)
lm =

−Y ∗
lm(θo,φo)

lRl−1
o

. (23)

From (15), we obtain the scalp current that achieves this idealized field as

Jlm =
−Y ∗

lm(θo,φo)

[Gl]1,7 lRl−1
o

. (24)

Transforming back into the space domain, the idealized montage is written as

J (θ ,φ) = −
∞∑

l=0

l∑

m=−l

(
[Gl]1,7 lRo

)−1
(R4/Ro)

lY ∗
lm(θo,φo)Ylm(θ ,φ). (25)

Thus, by implementing the montage of (25), the radial component of the electric field at a depth
of Ro follows a delta-Dirac distribution, with asymptotic density at the specified angle (θo,φo),
and zero density elsewhere. In practice, this optimized field may only be approximated by
truncating the spherical harmonic expansion at a finite value for l.

Figure 6(a) displays optimal montages corresponding to the expansions of (25) truncated
up to spatial frequencies of 5, 10, 20 and 30 cycles/degree. The selected target was θ = φ = 0.
The resulting montages exhibit an azimuthal symmetry, thus allowing us to plot the optimized
current density as a one-dimensional function of the elevation θ . From the figure, it follows
that the optimally focal montage takes the form of a spherical ‘sinc’ function. This is a
satisfying result, as it confirms the findings of Datta et al (2009), which revealed that the 4×1
configuration, consisting of a central anode and four surrounding cathodes, yielded superior
focality over conventional montages. The 4×1 configuration may be viewed as a low-order
approximation of the spherical sinc. The electric field corresponding to the spherical sinc
montage approximates a delta-Dirac function, as displayed for increasing spatial bandwidth
in figure 6(b). Figures 6(c) and (d) display the optimally focal montage and resulting electric
field on the surfaces of the corresponding spheres for bandwidths of 5 and 30 cycles/π ,
respectively. Due to the azimuthal symmetry, the spherical sinc montage translates to concentric
rings of alternating polarity, while the resulting electric field approximates a two-dimensional
delta-Dirac function. At a bandwidth of 5 cycles/π , the resulting montage consists of few
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Figure 6. The optimal montage for targeting an infinitesimal point on the cortical surface takes
the form of a spherical ‘sinc’ function (a), resulting in an electric field whose radial component
approximates a delta-Dirac function (b). The optimal montage and resulting field are depicted on
the surface of their respective spheres for BW = 5 (c) and BW = 30 (d). Expanding the bandwidth
(increasing the order) of the spherical harmonic expansion leads to a more focal electric field
(e), but at the expense of increased input current (f). (a) Optimal current distribution, (b) optimal
electric field, (c) ‘scalp’ current (left) and ‘brain’ electric field (right) for BW = 5, (d) ‘scalp’
current (left) and ‘brain’ electric field (right) for BW = 30, (e) focality and (f) current delivered.

rings of relatively low magnitude while yielding limited focality. On the other hand, at
30 cycles/π , both the number of rings and the magnitude increases dramatically, resulting in
a highly concentrated field, albeit at extremely high current requirements. From figure 6(e),
the corresponding FWHM decreases as we include higher order terms in (25). This increased
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focality, however, comes as the expense of increasing required current levels, as shown in
figure 6(f). Thus, safety considerations are a limiting factor in tCS focality: to yield the
electric field cancelation (around the target) necessary to produce a narrow focal region, high
input current levels are required. At the range of commonly applied dosages (i.e. 2 mA), the
corresponding FWHM is 45◦, or a quarter of the distance from θ = 0 to θ = π .

6. Discussion

In presenting this work, we hope to have provided an easily accessible tool which can
be used by tCS researchers and clinicians to explore various stimulation parameters.
While the mathematical details may be elusive to some readers, we are making the complete
source code used in the generation of the results available online via a graphical user interface
(neuralengr.com/spheres). We believe that while numerical methods such as FE solvers
are essential in developing forward models for individualized heads, the use of such tools
somewhat prevents us from gaining insight and inferring general principles of transcranial
current flow. For example, we have shown (figure 2) that the human head is a spatial low-
pass filter with an easily-computable frequency response (similar results have been previously
derived in the context of electroencephalography (Srinivasan et al 1998)). Moreover, the
eigenfunctions of the head are the spherical harmonics: this means that if the input scalp
current takes the form of Ylm(θ ,φ), the resulting potential in the brain is simply a scaled
version of this basis function! Here, the simplicity of the frequency–domain approach is most
evident, as numerical methods are surely not needed to carry out a multiplication operation. Of
course, the montages employed in practice are linear combinations of these harmonics; in this
case, the forward model is given by a weighted summation of the basis functions Ylm(θ ,φ).

By transforming the frequency–domain relationship between the applied scalp current
and the generated electric field back into the space domain, we derived the PSF of the head,
which quantifies the attenuation and blurring posed by the volume conductor to a unit current
placed on the scalp: the current density peaks at 0.45, 0.33 and 0.18 A m−2 on the surfaces
of the skull, CSF and brain, respectively. Meanwhile, the corresponding FWHMs are 10◦, 18◦

and 26◦, respectively (figure 2). The impact of the CSF is further elucidated when omitting
the CSF layer from the head model: in this case, the brain current peaks at 0.28 A m−2, with
the FWHM decreasing to 20◦.

We then utilized our model to investigate the effects of electrode size on the induced
electric field in the brain: it was revealed that smaller (5 cm2) electrodes yield an electric field
that is 60% more intense and 41% more focal compared to larger (5 cm2) electrodes (figure 3).
Next, we contrasted the fields induced by conventional montages in the adult versus child
brains: the induced field strength was found to be double and triple in the child for the M1-SO
and 4×1 configurations, respectively (figure 4). It was also shown that the issue of electrode
separation requires a determination on whether the desired current flow at the target is radial
or tangential: when radial flow is sought, maximal anode–cathode separation was found to
be optimal (figure 5). On the other hand, a minimal anode–cathode separation was found to
maximize the tangential component of the induced electric field at the target (figure 5). This
result extends previous findings showing that while the anode–cathode separation generally
increases the magnitude of current flow in the brain (Datta et al 2010), multiple factors such as
montage type and as desired orientation may determine optimal electrode separation in clinical
settings. For example, Moliadze et al (2010) found a negative correlation between electrode
separation and tCS induced after-effects. Finally, we showed that the optimal montage for
targeting an infinitesimal point on the brain takes the form of a spherical sinc function, with
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concentric rings of alternating polarity around the target (figure 6). The resulting field may be
taken to be as focal as desired, but at the expense of increasingly unsafe current levels.

6.1. Spherical harmonics and numerical stability

Working in the spherical harmonic domain is not without its caveats. The associated Legendre
polynomials take on very large values as the spatial frequency exceeds ≈20 cycles/π . The
matrix Hl , while inherently badly scaled for l " 5, was inverted up to l = 140 on a standard
microprocessor. At l " 140, the matrix is singular to working precision. However, from
figure 2, note that the frequency response values at such high frequencies are negligibly
small. Therefore, for practical use, we anticipate that a bandwidth of 30–50 cycles/π will
suffice for most tCS analyses. For example, figures 3–6 were constructed using a bandwidth
of 50 cycles/π . Higher order frequency components are required to approximate sharp edges
such as the boundary of an electrode.

6.2. Tangential current flow

In deriving the PSF of the head (via the inverse Fourier transform of the frequency response), we
have related the applied scalp current (oriented normally to the head) to the radial component of
the resulting current flow. This computation was facilitated by the fact that the radial derivative
of a spherical harmonic expansion is itself straightforward to express as a spherical harmonic
expansion. On the other hand, it is not easy to express the derivative of a spherical harmonic
expansion with respect to the elevation angle θ in terms of the basis functions Ylm(θ ,φ). As
a result, the derivation of the PSF between the scalp current and the tangential component
of the induced current flow is yet undetermined and the subject of ongoing work. While
explicit computation of the tangential PSF has proved elusive, it should be pointed out that
the frequency response G(1)

l allows for the computation of the electric field (and thus current
density) in any direction by taking the gradient of the electric potential V1.

6.3. Electrode shape

In this paper, we have derived the spherical harmonic expansions of both point and circular
electrodes. Other electrode shapes, for example rectangular pads, may be expressed in the
frequency domain by integrating the basis function Y ∗

lm(θ ,φ) across the electrode’s extent.
Once the expansion of one such electrode is determined, all rotations of this nominal electrode
along the sphere may be determined using the convenient rotation property of the spherical
harmonics (see the appendix).

6.4. Additional shells

While we have restricted the head model to four shells, it is straightforward to extend the
linear system of (12) to encompass additional tissue layers. For example, a fifth shell may be
inserted between the skull and the scalp to model the effect of subcutaneous fat. In the limiting
case, the matrix Hl becomes infinite, with the ‘head’ model consisting of an infinite number
of infinitesimally thin concentric shells.

6.5. Spherical models in rational tCS design

The rational development of tCS therapies requires not simply modeling as many montages
on as many subjects as possible, but rather deriving general rules for dose design. To that end,
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spherical models serve as an important starting point whose predictions may then be verified in
more complex models. Note that with MRI-based models, it is difficult to vary one parameter
while holding the others fixed: for example, increasing electrode separation also changes
local skull thickness. This is further complicated when considering montage changes across
subjects (e.g. increasing electrode separation in an adult versus a child). In addition, MRI-
derived forward models often yield detailed patterns of current flow, thus making it difficult
to draw general conclusions and interpret predictions. Spherical models are advantageous in
this regard; furthermore, sweeping a multi-dimensional parameter space becomes feasible
with the closed-form technique presented here. Finally, from a pragmatic standpoint, current
MRI-based approaches are not easily accessible, and we propose that the framework presented
here may serve as a valuable tool to inform ongoing tCS clinical trials.

Acknowledgments

The authors would like to thank Preet Minhas for providing us with anatomical MRI data that
were used in the adult versus child forward model comparison, as well as the reviewers for
improving the quality of the manuscript.

Appendix. Spherical harmonic expansion of a circular electrode

We wish to derive the spherical Fourier transform of a spherical cap (Harris et al 1998) on
a sphere of radius R. Without loss of generality, we assume that the center of the cap is at
θ = φ = 0, meaning that the corresponding function exhibits azimuthal symmetry:

p (θ ,φ) = p(θ ) =
{

1 0 # θ # ψ

0 θ " ψ .
(A.1)

The spherical harmonic coefficients of this function are given by

PlmRl =
∫ 2π

0

∫ π

0
p(θ ,φ)Y ∗

lm(θ ,φ) sin θ dθ dφ

=

√
2l + 1

4π

(l − m)!
(l + m)!

(∫ 2π

0
eimφ dφ

) (∫ ψ

0
Plm(cos θ ) sin θ dθ

)

=

√
2l + 1

4π

(l − m)!
(l + m)!

(2πδm0)

(∫ ψ

0
Plm(cos θ ) sin θ dθ

)

=
√

π (2l + 1)

∫ 1

cos ψ

Pl0(x) dx, (A.2)

where in the third line we have made use of the Kronecker delta function: δm0 =
{1 m=0

0 otherwise.

As the associated Legendre polynomials are easily integrable, the integral in (A.2) may be
evaluated either in the closed form (for every desired order l) or numerically. Note that the
coefficients are independent of the degree m. The resulting function models an electrode at the
vertex of the head (i.e. Cz) and has a surface area specified by the parameter ψ .

In order to compute the coefficients for an arbitrary electrode position (θ ,φ) = (β,α), one
can utilize the rotation property of the spherical harmonics (Wigner et al 1931): the coefficients
of the rotated function q(θ ,φ) = p(θ − β,φ − α) may be computed as a transformation of
the original coefficients Plm,

QlmRl =
l∑

m′=−l

e− jm′αdl
mm′ (β)

(
Plm′Rl) , (A.3)
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where

dl
mm′ (β) =

[
(l + m′)!(l − m′)!(l + m)!(l − m)!

]1/2

×
∑

s

(−1)m′−m+s

(l + m − s)!s!(m′ − m + s)!(l − m′ − s)!

× cos(β/2)2l+m−m′−2s sin(β/2)m′−m+2s, (A.4)

where the summation over s in (A.4) is such that the arguments of all factorials are non-negative.
In our development, we implemented the transformation of (A.3) directly, resulting in

numerical stability up to l = 140. If it is desired to model arbitrarily located circular electrodes
with even higher frequency components, one may choose to implement the method of Gimbutas
and Greengard (2009), which reduces the computational time and alleviates the numerical
stability issues associated with the naı̈ve approach.
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