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Response Error Correction—A Demonstration of reported (using a simple linear classifier) up to 79% correct detection
Improved Human-Machine Performance Using of the ERN within 100 ms of the erroneous response [8].
Real-Time EEG Monitoring In this paper, we describe a BCI system which uses the detected

ERN to correct erroneous responses of subjects so as to minimize the
Lucas C. Parra, Clay D. Spence, Adam D. Gerson, and Paul Sajdaverall human-machine error rate. In particular, we focus on a set of

adaptive, linear algorithms for data preprocessing and ERN detection.

The algorithms are designed for single-trial, online processing and run
Abstract—\We describe a brain—computer interface (BCI) system, which i real-time on data that is streaming from a 64-channel EEG system

uses a set of adaptive linear preprocessing and classification algorithms for . .
single-trial detection of error related negativity (ERN). We use the detected through Ethernet. The latency of the total system is approximately

ERN as an estimate of a subject’s perceived error during an alternative 230 ms which is primarily constrained by the 200 ms integration time
forced choice visual discrimination task. The detected ERN is used to cor- required for ERN detection.
rect subject errors. Our initial results show average improvement in subject BCI systems are currently being developed primarily as a communi-
performance of 21% when errors are automatically corrected via the BCI. - oiqns means for severely motor impaired subjects. We are currently
We are currently investigating the generalization of the overall approach . S . L
to other tasks and stimulus paradigms. exploring other applications of the proposed real-time monitoring. For
instance, we argue that one may be able to increase the speed of vi-
sual search for image analysts by detecting the activity associated with
fast visual recognition. Single-trial detection of this activity permits by-
passing slow motor response, thereby increasing human performance
as we have demonstrated in a rapid visual serial presentation (RSVP)
I. ADAPTIVE HUMAN—COMPUTER INTERFACE paradigm [11].

Index Terms—Brain—computer interface (BCl), electroencephalography
(EEG), error related negativity (ERN), eye blink removal, single-trial
detection.

The performance of a human subject executing a task while
interacting with a computer can be highly variable, depending upon  Il. ADAPTIVE LINEAR ON-LINE REAL-TIME PROCESSING

such individual factors as level of alertness, reaction speed, workingy,e describe in Sections II-A and B novel algorithms for EEG
memory capacity, and capacity to perform parallel tasks. Most curreff pjink removal and denoising. These algorithms preserve the
human-—computer interfaces (HCI) do not adapt to the physiologiGaky signal and, in fact, improve detection accuracy as presented in
or psychological state of the user. The goal ofeafaptiveinterface  gection |1-C. In all cases, we first remove baseline drifts, most likely
is to estimate variables correlated with human performance age (4 siow skin conductivity changes, by filtering each channel with a

adapt the HCI accordingly (e.g., adjust speed of display, providg. sive linear high-pass filter (second-order Butterworth with 1-Hz
appropriate cues, automatically correct errors, etc.) Several behaw%rlﬁl_off frequency).

and physiological measures, such as reaction time, eye motion, and
pupil dilation, have been proposed as variables having utility f%r
adapting an HCI [1], [2]. More recently, research in neuroimaging has
identified electroencephalography (EEG) signals that are correlated’he muscle activity of eye blinks generates strong electrical signals
with attention [3], memory encoding [4], motor imagery [5], perceivethat are linearly superimposed with smaller magnitude signals of in-
error and/or conflict [6], perception/recognition [7] and whichterest (e.g., the ERN). Here, we present a novel algorithm for eye blink
therefore, might be useful for such adaptation. removal. Conventional algorithms detect eye blinks to simply discard

In this paper, we describe a brain—computer interface (BCl) capaltie corresponding segment of data. This is not feasible in practice given
of monitoring a subject's cognitive state associated with specifibe frequent eye motion in most real-world situations. A better ap-
observable events. We argue that this information can be used to ad¥pech is to subtract the artifacts using linear regression algorithms
the HCI, and ultimately maximize performance. As an example, We-g-, [12]). Existing methods typically use electrooculogram (EOG)
demonstrate our initial results using a high-throughput, alternatigéectrodes as a reference. Unfortunately, in addition to eye motion,
forced choice visual discrimination task. In this task, a subje&OG signals also contain frontal cortical activity which should not be
discriminates between two visual stimuli by pressing one of twaubtracted. We construct a better reference signal using a linear combi-
buttons. When subjects attempt to minimize their response time, thggtion of all electrodes, thereby increasing the power of the eye blink
often commit errors that are perceived shortly after the button-puggtivity in the reference.
responsé. Interestingly, such perceived errors are accompanied byLetx(t) be the observed EEG sensor readifi@) be the eye blink
a negative fronto-central deflection in the EEG signal. This signal #gnal, ands(¢) be the remaining signal of interest
known as the error related negativity (ERN) [9]. Single-trial detection
of the ERN has been proposed as a means of correcting communication x(t) = ay(t) + s(t). (@)
errors in a BCI system [10]. For offline processing, we have recently

The linear coupling of the eye blink sourgéf) with the EEG sensors
is denoted aa. The arbitrary scale in the factorizatiey(¢) can be
Manuscript received June 16, 2002; revised February 14, 2003. This work vemstrained by setting’ a = 1. Givena, we can generate a new signal
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0 2 4 6 8 10 Fig. 2. Overview of the HMT. (A) Marginal distribution of evoked response
time in s EEG wavelet coefficients showing large peak and long tails (kurtesis

17.5). (B) Two-state Gaussian mixture model for the marginal distribution of
Fig. 1. Eye-blink detection and subtraction using first principal componergvoked response EEG. (C) Graphical representation of state dependencies on
(top left) EOG channel before and after subtraction of eye blinks. (right) Scattvserved wavelet coefficients (white nodes are hidden variables, black nodes
plot of the activity in EOG electrode and a frontal electrode during the same 1@® observed). (D) Hidden Markov tree indicating the dependencies between
time interval. Solid line shows the orientation of the first principal componerstcales.
estimated during eye blinks. (bottom left) Power magnitude (upper trace) and
time averaged skew (center trace) of the power in frontal and EOG electrodes,

as well as eye blink detector output (lower trace). fied a few seconds after observing only a single blink. Eye blinks last
for approximately 100 ms, which at 250-Hz sampling rate corresponds
The key challenge lies in estimating the coupliagRecent work to about 25 samples to estimdBx(¢). Only a few hundred itera-
suggests to use independent component analysis (ICA) in order to idgons of (3) are required for convergence, i.e., 2-3 s after that eye blink.
tify such linear projection associated with EEG artifacts [13]. In our eSubsequent eye blinks are accurately subtracted, as seen in Fig. 1. We
perience, however, ICA methods have not proven robust when appligdl thata; does not change much in the course of an experiment, and
online. Fortunately, during eye blinks, the activityt) is large com- only a few eye blinks are required for an accurate estimation of the co-
pared to the signals of interes ). This is, in particular, true for frontal variance matrixes. We can, therefore, set the detector thresholds and
electrodes and EOG signals commonly acquired with EEG. The projégarning constant to very conservative values.
tion a can, therefore, be identified using principal component analysis
(PCA) for which a number of robust online algorithms are available.g - penoising the ERN Using Temporal Hidden-Markov-Trees
Our method partitions the 64 recorded channels into two sets: 1) the ) . . . .
EOG and frontal electrodes containing strong eye blink signals andone challenge in detecting the cognitive state of a subject via single-
2) the remaining parietal, temporal, and occipital electrodes wiffal EEG is the inherently low signal-to-noise ratio (SNR). In devel-
weaker eye blink signal contributions. Let us denote this partitioniffPing denoising algorithms for improving the SNR, it is critical to
with x(t) = [x (), x2(¢)] and correspondingly = [a; . as]. We pro-  ©! tain aC_curate noise estimates as well as exploit properu_es of t'he
pose to identifya; as the first principal component sf (¢) estimated §|gna! which preserve its structgrfe. For the purpose .of detection, noise
during eye blinksas demonstrated in Fig. 1. Given the coupling is defined here as temporal actlvm_/ in the E_EG that is ur_lrelated to_the
we obtain an estimate for the eye blink signaliass alx, (1), since ERN. We, therefore, develop _astatls_tlcal noise mode_l using the activity
§(t) ~ y(t) for the case thag(t) < a’s. The partitionihg further auring some un.related pasellng period. This model is then used to re-
weights the eye muscle activity in the estimateThe remaining move noise during the time period of thg evoked response. We expect
coupling factorsa, can be determined with conventional regressioril® Wavelet transform of evoked potentials, as with many other types
ie., as the linear predictors of; given §(t). Interestingly, the of ngtural signals [14], to exhibit the pgrsstence qf !arge or small co-
update equations for the principal componentsand the regression eff|C|er_1t_s across sca_le and the clgst(_arln_g of coefficients W|t_h|_n scale.
coefficientsas have the same analytic form and can be combined inlB addition, observgtlons on the dlstrlbutlon_ qf wavelet coefficients of
a single online update equation. After normalizing with the outplﬁEG evoked potentials reveal that the coefficients have near zero mean

power to accelerate convergence with a constant learninguatee  2nd long tails—i.e., they are super-Gaussian [see Fig. 2(a)]. Here, we

update becomes propose to estimate noise's_tatistics by modeling such signal properties
with a hierarchical probability model.
Aa=—pu (a _ M) (3) Super-Gaussian distributions may be approximated using a
a’ Ruxx, (t)a two-state zero-mean Gaussian mixture model in which the large

whereRxx, (t) andRx, x, (¢) are the corresponding portions of a runnumber of small coefficients are modeled with a low-variance
ning estimate of the covariancexfduring eye blinks, e.gRxx(t) = Gaussian and the small number of large coefficients are modeled
YRax(t — 1) + (1 — ~)x(t)x] (t) with a forgetting factory. For the with a high-variance Gaussian [Fig. 2(b)]. To efficiently describe the
required eye blink detection, we use the instantaneous magnitude, astadistics of wavelet coefficients, each coefficient is associated with a
a time-averaged skew of the powerin(¢). A blink is detected when hidden-state variable that describes whether the coefficient is in either
these quantities cross a predetermined threshold. a high- or low-variance state [Fig. 2(c)].

Fig. 1 shows a scatter plot of the signals of two electrodes in the seln order to model the conditional relationships described by per-
x; and the corresponding orientationsain as they have been identi- sistence properties of wavelet coefficients, hidden-state variables are
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linked across scales. Coefficients within scale are assumed to have
the same probability density function, an approximation referred to as
“tying” within scale. Fig. 2(d) shows the hidden Markov tree (HMT),
which was first developed by Crouseal.[14] and represents a graph-
ical model of a set of dependencies between wavelet coefficients. The
HMT, and similar models, have been used for a wide variety of signal
and image processing applications including classification, segmenta- L
tion, compression, synthesis, and denoising [15]-[18].

The parameters of the two-state zero-mean HMT consist of 1) the
probability mass functiop? describing the high-/low-variance state
of the wavelet coefficients of the coarsest scale, 2) the state transition
matrices describing persistence between adjacent scales, and (3) th
variances of the Gaussian mixture model, ands%;.

These parameters can be estimated using a modified
Baum-Welch/upward-downward expectation maximization algorithm
[19]. For the data shown in Fig. 3, we find that after training the
transition matrices across scale are not uniformily distributed between
states. This confirms the modeling assumption of the persistence of
large or small coefficients across scale.

We follow the denoising methods outlined in [14]. Assume that the g
relationship between the wavelet coefficients of the observed EEG >
signalw?, clean signal¥, and noise»* may be described as

w,’f = y,’-C + nf 4)

where the subscriptindicates theth wavelet coefficient and the su-
perscriptk indicates it comes from thieth wavelet tree. Assuming in-
dependent Gaussian white noise, we can estimate the state depende
clean signal varianoe?’m from the noisy signal variancg .,
UE,m = (A)'/??,m - 03:)+ (5)
wherem indicates the state arid)- indicates a rectification allowing
for only zero and positive values of its arguménin the results, we
present an estimate of noise variance is derived from the variance of the
finest scale wavelet coefficients. However, this estimate can be adjusté#i 3.  Results of single-trial denoising using the HMT. (Top) original (noisy)
to use only a specific subspace of the wavelet basis, depending U@ﬁﬂal after eye blink removal. (Bottom) clean signal denoised using HMT.
. . . . . own are the signals and wavelet decompositions.
prior knowledge of the noise source or interfering signal.
An estimate of the clean signal wavelet coefficiepfs given the

noisy wavelet coefficients and state variables is given by an accuracy ofd. = 0.79 £ 0.05 using a linear classifier on 64
5 electrodes.
E [Y;’“|Wi’“ =wl, SF = m] = Zglimzwf‘ (6) In addition to the preprocessing methods just described, we have
Tn T Tim looked to improve detection accuracy by adding a second detection

interval of 100 ms following the conventional time window of 0—100
ms after the response. The input to the linear classifier is a combination
A & x 0% . of two time windows of 64 leads (128 inputs). To improve classification
E [’Zli |w ] = ZP (Si =mlw ) i rez (") and reduce the effect of high-frequency noise, we bootstrap the data by
” - selecting multiple samples within a single trial as training data. At a
wherew* is a vector representing all coefficients in thth tree. Given 250-Hz sampling rate, the 200 ms following the response results in 25
these estimates for the clean signal wavelet coefficients, the invet&dning samples, each of dimension 128.
wavelet transform is applied to reconstruct the signal. Our online detector is a Gaussian classifier and can be adapted by
Examples of original and HMT denoised EEG signals, after ey@mply updating the mean and covariance estimates for the two classes
blink removal, are demonstrated in Fig. 3 for a 10-s segment of datging the most recent sample. With equal covariance for the two classes
For the single-trial analysis the HMT denoising is applied to a shdgrrors/corrects), this results in linear classification. The advantage of
segment of data of about 500 ms around the event of interest (buttiigar classification is that we can compute the coupling of the discrim-
push). The HMT parameters are estimated for each channel frorinating source activity with the sensors. This provides a spatial map of

Marginalizing over the state variabR results in

single event at the beginning of the experiment. the origin of the discriminating activity. The results obtained for a typ-
ical subject are shown in Fig. 4. The previously described fronto-central
C. ERN Detection With Linear Discriminant Analysis negativity is observed during the 100 ms following the response. In ad-

. . . . . dition, a more prolonged bilateral posterior positivity is observed for
We have previously reported [8] offline single trial detection of ERN@]OITGCI trials, which further improves discrimination. The single-trial

in a time window 0-100 ms following the button-push response, wi scrimination performance for the seven subjects analyzed in [8] in-

2This rectification can cause deviation from linearity. However, in practice freases toi. = 0.90 & 0.04 when using offline linear preprocessing.
is not a factor since the difference is almost always positive. Note the processing sequence: eye blink removal, followed by HMT
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0 02 o4 04s028 the minimum is not at zero, indicating that the underlying distributions deviate
T from Gaussian.
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Fig. 4. ERN detection using linear discrimination combining the time

intervals 0-100 ms and 100-200 ms after response. (left) Discriminating TABLE |

component and (center) scalp projection graphs results were obtained wigymmaRY oF ON-LINE ERROR CORRECTION FOREACH OF SEVEN SUBJECTS
offline linear classification. Similar results are obtained with online adaptation.

(right) Single-trial ROC results comparé. for offline (LOO), online and

using onlyF. . electrode. Note that on- and offline are comparable. Subject original error % error
D rate in % reduction®
327 6 23

denoising, followed by linear classification. The largest jump in per-

formance was due to the eye blink removdl. (increases from 0.79 i‘gg 1(5) ' '(1;
to 0.89). HMT denoising increasetl. from 0.89 to 0.90. The perfor- 4'04 15 49
mance for online processifis A. = 0.91+0.03, where performance 4.05 13 27
is measured by predicting the classification of the next sample using 4.09 14 47
only past data. 410 18 12

#Negative values indicate degradation in performance.
Ill. CORRECTINGERRORSUSING THEDETECTEDERN

Using the detected ERN to correct human response errors requitesthreshold that minimizes the error rate on these setsEiefyc: +
choosing a threshold on the output of the linear classifier so as to miiy fi-;. We estimatefr and fii: from the outputs we have saved,
imize the number of error&nnv made by the combined human—-maand keep count of/;; andC'y from the trials we have seen thus far.
chine system. This is the number of errdfs; made by the subject The threshold is applied to a new sample that is not part of this training
alone, minus the number of those errors detected by our BCI systesst. Table | summarizes the results for each subject. An experiment
plus the number of correct responses by the subject that were incoonsists of about 600 button push responses of which 5%—-20% are
rectly classified as errors by our BCI system. Denotefby the frac- incorrect. The middle column show the error rate before correction.
tion of subject errors detected by the BCI system (true errors), amtle average relative reduction in error rate for 7 subjects under online
by fre the fraction of correct subject responses incorrectly classifigitocessing is 21% + 21.7%. Note the large variance indicates very
as errors by our BCI system (false errors). We can whiew = large improvements for some subjects and no improvement or slight
En(1 — fre) + Cirfre. However,1 — ftr = frc, the fraction degradations in performance for other subjects.
of subject errors that were incorrectly classified as correct responsefn practical applications, the error correction system will not have
(false correct). The number of human-machine errors is, therefosecess to the correct response. The parameters for the linear classifier
Er fre + Cir fre, which is the total number of classifier errors. and the detection threshold must be derived from an initial training se-

If we construct a classifier that estimates the class probabiliguence and are kept constant during operation. The performance num-
we minimize the number of errors by assigning new trials to theers reported here reflect this scenario in that we report classification
class with the highest probability under the classifier. In terms of theerformance on the current trial using a classifier that is trained only
log-odds-ratio, we minimize the error rate by choosing a threshold of information from previous trials.
zero. Since we employ Gaussian models with equal covariance ma-
trices for the class distributions, the log-odds ratio is a linear function IV. CONCLUSION

of the input. However, if the actual class distributions do not fit our h q ibed , . d classificati
model distributions, our linear discriminator is only an approximation We have described a set of linear preprocessing and classification

to the true log-odds ratio, and the optimal threshold may differ fro@90rithms for providing an accurate single-trial estimate of the ERN,
zero. This appears to be the case for this set of experiments, as weXbEEC signal which has been found to correlate with perceived error.
in Fig. 5. The goal of measuring the ERN is to monitor a subject’s task specific
In our online implementation, we choose an optimal threshold K/°r rate and adapt an HCI to maximize overall performance. We have

keeping a record of the outputs of the linear discriminator for the la&toWn initial results for both offline and online correction of subject
100 trials of both correct and erroneous responses. We then searctFfHP's for an gltern{;\tlve forced c_h0|_ce visual discrimination task. Fu-
ture work will investigate generalization of the approach to other tasks,

3The online version does not yet include the HMT denoising. particularly those which require more complex adaption of the HCI.
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