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Response Error Correction—A Demonstration of
Improved Human-Machine Performance Using

Real-Time EEG Monitoring

Lucas C. Parra, Clay D. Spence, Adam D. Gerson, and Paul Sajda

Abstract—We describe a brain–computer interface (BCI) system, which
uses a set of adaptive linear preprocessing and classification algorithms for
single-trial detection of error related negativity (ERN). We use the detected
ERN as an estimate of a subject’s perceived error during an alternative
forced choice visual discrimination task. The detected ERN is used to cor-
rect subject errors. Our initial results show average improvement in subject
performance of 21% when errors are automatically corrected via the BCI.
We are currently investigating the generalization of the overall approach
to other tasks and stimulus paradigms.

Index Terms—Brain–computer interface (BCI), electroencephalography
(EEG), error related negativity (ERN), eye blink removal, single-trial
detection.

I. ADAPTIVE HUMAN–COMPUTERINTERFACE

The performance of a human subject executing a task while
interacting with a computer can be highly variable, depending upon
such individual factors as level of alertness, reaction speed, working
memory capacity, and capacity to perform parallel tasks. Most current
human–computer interfaces (HCI) do not adapt to the physiological
or psychological state of the user. The goal of anadaptiveinterface
is to estimate variables correlated with human performance and
adapt the HCI accordingly (e.g., adjust speed of display, provide
appropriate cues, automatically correct errors, etc.) Several behavioral
and physiological measures, such as reaction time, eye motion, and
pupil dilation, have been proposed as variables having utility for
adapting an HCI [1], [2]. More recently, research in neuroimaging has
identified electroencephalography (EEG) signals that are correlated
with attention [3], memory encoding [4], motor imagery [5], perceived
error and/or conflict [6], perception/recognition [7] and which,
therefore, might be useful for such adaptation.

In this paper, we describe a brain–computer interface (BCI) capable
of monitoring a subject’s cognitive state associated with specific
observable events. We argue that this information can be used to adapt
the HCI, and ultimately maximize performance. As an example, we
demonstrate our initial results using a high-throughput, alternative
forced choice visual discrimination task. In this task, a subject
discriminates between two visual stimuli by pressing one of two
buttons. When subjects attempt to minimize their response time, they
often commit errors that are perceived shortly after the button-push
response.1 Interestingly, such perceived errors are accompanied by
a negative fronto-central deflection in the EEG signal. This signal is
known as the error related negativity (ERN) [9]. Single-trial detection
of the ERN has been proposed as a means of correcting communication
errors in a BCI system [10]. For offline processing, we have recently
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1For more detailed description of the experimental paradigm, see [8].

reported (using a simple linear classifier) up to 79% correct detection
of the ERN within 100 ms of the erroneous response [8].

In this paper, we describe a BCI system which uses the detected
ERN to correct erroneous responses of subjects so as to minimize the
overall human-machine error rate. In particular, we focus on a set of
adaptive, linear algorithms for data preprocessing and ERN detection.
The algorithms are designed for single-trial, online processing and run
in real-time on data that is streaming from a 64-channel EEG system
through Ethernet. The latency of the total system is approximately
230 ms which is primarily constrained by the 200 ms integration time
required for ERN detection.

BCI systems are currently being developed primarily as a communi-
cations means for severely motor impaired subjects. We are currently
exploring other applications of the proposed real-time monitoring. For
instance, we argue that one may be able to increase the speed of vi-
sual search for image analysts by detecting the activity associated with
fast visual recognition. Single-trial detection of this activity permits by-
passing slow motor response, thereby increasing human performance
as we have demonstrated in a rapid visual serial presentation (RSVP)
paradigm [11].

II. A DAPTIVE LINEAR ON-LINE REAL-TIME PROCESSING

We describe in Sections II-A and B novel algorithms for EEG
eye blink removal and denoising. These algorithms preserve the
ERN signal and, in fact, improve detection accuracy as presented in
Section II-C. In all cases, we first remove baseline drifts, most likely
due to slow skin conductivity changes, by filtering each channel with a
recursive linear high-pass filter (second-order Butterworth with 1-Hz
cut-off frequency).

A. Robust Eye Blink Removal With Principal Component Analysis

The muscle activity of eye blinks generates strong electrical signals
that are linearly superimposed with smaller magnitude signals of in-
terest (e.g., the ERN). Here, we present a novel algorithm for eye blink
removal. Conventional algorithms detect eye blinks to simply discard
the corresponding segment of data. This is not feasible in practice given
the frequent eye motion in most real-world situations. A better ap-
proach is to subtract the artifacts using linear regression algorithms
(e.g., [12]). Existing methods typically use electrooculogram (EOG)
electrodes as a reference. Unfortunately, in addition to eye motion,
EOG signals also contain frontal cortical activity which should not be
subtracted. We construct a better reference signal using a linear combi-
nation of all electrodes, thereby increasing the power of the eye blink
activity in the reference.

Let x(t) be the observed EEG sensor reading,y(t) be the eye blink
signal, ands(t) be the remaining signal of interest

x(t) = ay(t) + s(t): (1)

The linear coupling of the eye blink sourcey(t) with the EEG sensors
is denoted asa. The arbitrary scale in the factorizationay(t) can be
constrained by settingaTa = 1. Givena, we can generate a new signal
~x(t), which only contains the signal of interest when the orientation of
the eye blink is removed

~x(t) = (I� aa
T )x(t) = (I� aa

T )s(t): (2)

Only source signals that are exactly collinear witha are removed. All
other source signals will have at least a residual contribution to~x(t)
and may be detected with appropriate algorithms.
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Fig. 1. Eye-blink detection and subtraction using first principal component.
(top left) EOG channel before and after subtraction of eye blinks. (right) Scatter
plot of the activity in EOG electrode and a frontal electrode during the same 10-s
time interval. Solid line shows the orientation of the first principal component
estimated during eye blinks. (bottom left) Power magnitude (upper trace) and
time averaged skew (center trace) of the power in frontal and EOG electrodes,
as well as eye blink detector output (lower trace).

The key challenge lies in estimating the couplinga. Recent work
suggests to use independent component analysis (ICA) in order to iden-
tify such linear projection associated with EEG artifacts [13]. In our ex-
perience, however, ICA methods have not proven robust when applied
online. Fortunately, during eye blinks, the activityy(t) is large com-
pared to the signals of interests(t). This is, in particular, true for frontal
electrodes and EOG signals commonly acquired with EEG. The projec-
tion a can, therefore, be identified using principal component analysis
(PCA) for which a number of robust online algorithms are available.

Our method partitions the 64 recorded channels into two sets: 1) the
EOG and frontal electrodes containing strong eye blink signals and
2) the remaining parietal, temporal, and occipital electrodes with
weaker eye blink signal contributions. Let us denote this partitioning
with x(t) = [x1(t);x2(t)] and correspondinglya = [a1; a2]. We pro-
pose to identifya1 as the first principal component ofx1(t) estimated
during eye blinksas demonstrated in Fig. 1. Given the couplinga1,
we obtain an estimate for the eye blink signal as,ŷ = a

T

1 x1(t), since
ŷ(t) � y(t) for the case thaty(t) � a

T
s. The partitioning further

weights the eye muscle activity in the estimateŷ. The remaining
coupling factorsa2 can be determined with conventional regression,
i.e., as the linear predictors ofx2 given ŷ(t). Interestingly, the
update equations for the principal componentsa1, and the regression
coefficientsa2 have the same analytic form and can be combined into
a single online update equation. After normalizing with the output
power to accelerate convergence with a constant learning rate�, the
update becomes

�a = �� a�
Rxx (t)a

aTRx x (t)a
(3)

whereRxx (t) andRx x (t) are the corresponding portions of a run-
ning estimate of the covariance ofx during eye blinks, e.g.,Rxx(t) =

Rxx(t � 1) + (1� 
)x(t)xT1 (t) with a forgetting factor
. For the
required eye blink detection, we use the instantaneous magnitude, and
a time-averaged skew of the power inx1(t). A blink is detected when
these quantities cross a predetermined threshold.

Fig. 1 shows a scatter plot of the signals of two electrodes in the set
x1 and the corresponding orientations ina1 as they have been identi-

Fig. 2. Overview of the HMT. (A) Marginal distribution of evoked response
EEG wavelet coefficients showing large peak and long tails (kurtosis=

17.5). (B) Two-state Gaussian mixture model for the marginal distribution of
evoked response EEG. (C) Graphical representation of state dependencies on
observed wavelet coefficients (white nodes are hidden variables, black nodes
are observed). (D) Hidden Markov tree indicating the dependencies between
scales.

fied a few seconds after observing only a single blink. Eye blinks last
for approximately 100 ms, which at 250-Hz sampling rate corresponds
to about 25 samples to estimateRxx(t). Only a few hundred itera-
tions of (3) are required for convergence, i.e., 2–3 s after that eye blink.
Subsequent eye blinks are accurately subtracted, as seen in Fig. 1. We
find thata1 does not change much in the course of an experiment, and
only a few eye blinks are required for an accurate estimation of the co-
variance matrixes. We can, therefore, set the detector thresholds and
learning constant to very conservative values.

B. Denoising the ERN Using Temporal Hidden-Markov-Trees

One challenge in detecting the cognitive state of a subject via single-
trial EEG is the inherently low signal-to-noise ratio (SNR). In devel-
oping denoising algorithms for improving the SNR, it is critical to
obtain accurate noise estimates as well as exploit properties of the
signal which preserve its structure. For the purpose of detection, noise
is defined here as temporal activity in the EEG that is unrelated to the
ERN. We, therefore, develop a statistical noise model using the activity
during some unrelated baseline period. This model is then used to re-
move noise during the time period of the evoked response. We expect
the wavelet transform of evoked potentials, as with many other types
of natural signals [14], to exhibit the persistence of large or small co-
efficients across scale and the clustering of coefficients within scale.
In addition, observations on the distribution of wavelet coefficients of
EEG evoked potentials reveal that the coefficients have near zero mean
and long tails—i.e., they are super-Gaussian [see Fig. 2(a)]. Here, we
propose to estimate noise statistics by modeling such signal properties
with a hierarchical probability model.

Super-Gaussian distributions may be approximated using a
two-state zero-mean Gaussian mixture model in which the large
number of small coefficients are modeled with a low-variance
Gaussian and the small number of large coefficients are modeled
with a high-variance Gaussian [Fig. 2(b)]. To efficiently describe the
statistics of wavelet coefficients, each coefficient is associated with a
hidden-state variable that describes whether the coefficient is in either
a high- or low-variance state [Fig. 2(c)].

In order to model the conditional relationships described by per-
sistence properties of wavelet coefficients, hidden-state variables are
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linked across scales. Coefficients within scale are assumed to have
the same probability density function, an approximation referred to as
“tying” within scale. Fig. 2(d) shows the hidden Markov tree (HMT),
which was first developed by Crouseet al.[14] and represents a graph-
ical model of a set of dependencies between wavelet coefficients. The
HMT, and similar models, have been used for a wide variety of signal
and image processing applications including classification, segmenta-
tion, compression, synthesis, and denoising [15]–[18].

The parameters of the two-state zero-mean HMT consist of 1) the
probability mass functionpSi describing the high-/low-variance state
of the wavelet coefficients of the coarsest scale, 2) the state transition
matrices describing persistence between adjacent scales, and (3) the
variances of the Gaussian mixture model,�2L and�2H .

These parameters can be estimated using a modified
Baum–Welch/upward-downward expectation maximization algorithm
[19]. For the data shown in Fig. 3, we find that after training the
transition matrices across scale are not uniformily distributed between
states. This confirms the modeling assumption of the persistence of
large or small coefficients across scale.

We follow the denoising methods outlined in [14]. Assume that the
relationship between the wavelet coefficients of the observed EEG
signalwk

i , clean signalyki , and noisenki may be described as

w
k
i = y

k
i + n

k
i (4)

where the subscripti indicates theith wavelet coefficient and the su-
perscriptk indicates it comes from thekth wavelet tree. Assuming in-
dependent Gaussian white noise, we can estimate the state dependent
clean signal variance�2i;m from the noisy signal variance
2i;m

�
2

i;m = 

2

i;m � �
2

n +
(5)

wherem indicates the state and(x)+ indicates a rectification allowing
for only zero and positive values of its argument.2 In the results, we
present an estimate of noise variance is derived from the variance of the
finest scale wavelet coefficients. However, this estimate can be adjusted
to use only a specific subspace of the wavelet basis, depending upon
prior knowledge of the noise source or interfering signal.

An estimate of the clean signal wavelet coefficientsyki , given the
noisy wavelet coefficients and state variables is given by

E Y
k
i jW

k
i = w

k
i ; S

k
i = m =

�2i;m

�2n + �2i;m
w
k
i : (6)

Marginalizing over the state variableSki results in

E y
k
i jw

k =
m

p S
k
i = mjwk �

�2i;m

�2n + �2i;m
w
k
i (7)

wherewk is a vector representing all coefficients in thekth tree. Given
these estimates for the clean signal wavelet coefficients, the inverse
wavelet transform is applied to reconstruct the signal.

Examples of original and HMT denoised EEG signals, after eye
blink removal, are demonstrated in Fig. 3 for a 10-s segment of data.
For the single-trial analysis the HMT denoising is applied to a short
segment of data of about 500 ms around the event of interest (button
push). The HMT parameters are estimated for each channel from a
single event at the beginning of the experiment.

C. ERN Detection With Linear Discriminant Analysis

We have previously reported [8] offline single trial detection of ERN,
in a time window 0–100 ms following the button-push response, with

2This rectification can cause deviation from linearity. However, in practice it
is not a factor since the difference is almost always positive.

Fig. 3. Results of single-trial denoising using the HMT. (Top) original (noisy)
signal after eye blink removal. (Bottom) clean signal denoised using HMT.
Shown are the signals and wavelet decompositions.

an accuracy ofAz = 0:79 � 0:05 using a linear classifier on 64
electrodes.

In addition to the preprocessing methods just described, we have
looked to improve detection accuracy by adding a second detection
interval of 100 ms following the conventional time window of 0–100
ms after the response. The input to the linear classifier is a combination
of two time windows of 64 leads (128 inputs). To improve classification
and reduce the effect of high-frequency noise, we bootstrap the data by
selecting multiple samples within a single trial as training data. At a
250-Hz sampling rate, the 200 ms following the response results in 25
training samples, each of dimension 128.

Our online detector is a Gaussian classifier and can be adapted by
simply updating the mean and covariance estimates for the two classes
using the most recent sample. With equal covariance for the two classes
(errors/corrects), this results in linear classification. The advantage of
linear classification is that we can compute the coupling of the discrim-
inating source activity with the sensors. This provides a spatial map of
the origin of the discriminating activity. The results obtained for a typ-
ical subject are shown in Fig. 4. The previously described fronto-central
negativity is observed during the 100 ms following the response. In ad-
dition, a more prolonged bilateral posterior positivity is observed for
correct trials, which further improves discrimination. The single-trial
discrimination performance for the seven subjects analyzed in [8] in-
creases toAz = 0:90� 0:04 when using offline linear preprocessing.
Note the processing sequence: eye blink removal, followed by HMT
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Fig. 4. ERN detection using linear discrimination combining the time
intervals 0–100 ms and 100–200 ms after response. (left) Discriminating
component and (center) scalp projection graphs results were obtained with
offline linear classification. Similar results are obtained with online adaptation.
(right) Single-trial ROC results compareA for offline (LOO), online and
using onlyF electrode. Note that on- and offline are comparable.

denoising, followed by linear classification. The largest jump in per-
formance was due to the eye blink removal (Az increases from 0.79
to 0.89). HMT denoising increasedAz from 0.89 to 0.90. The perfor-
mance for online processing3 isAz = 0:91�0:03, where performance
is measured by predicting the classification of the next sample using
only past data.

III. CORRECTINGERRORSUSING THEDETECTEDERN

Using the detected ERN to correct human response errors requires
choosing a threshold on the output of the linear classifier so as to min-
imize the number of errorsEHM made by the combined human–ma-
chine system. This is the number of errorsEH made by the subject
alone, minus the number of those errors detected by our BCI system,
plus the number of correct responses by the subject that were incor-
rectly classified as errors by our BCI system. Denote byfTE the frac-
tion of subject errors detected by the BCI system (true errors), and
by fFE the fraction of correct subject responses incorrectly classified
as errors by our BCI system (false errors). We can writeEHM =
EH(1 � fTE) + CHfFE. However,1 � fTE = fFC, the fraction
of subject errors that were incorrectly classified as correct responses
(false correct). The number of human–machine errors is, therefore,
EHfFC + CHfFE, which is the total number of classifier errors.

If we construct a classifier that estimates the class probability,
we minimize the number of errors by assigning new trials to the
class with the highest probability under the classifier. In terms of the
log-odds-ratio, we minimize the error rate by choosing a threshold of
zero. Since we employ Gaussian models with equal covariance ma-
trices for the class distributions, the log-odds ratio is a linear function
of the input. However, if the actual class distributions do not fit our
model distributions, our linear discriminator is only an approximation
to the true log-odds ratio, and the optimal threshold may differ from
zero. This appears to be the case for this set of experiments, as we see
in Fig. 5.

In our online implementation, we choose an optimal threshold by
keeping a record of the outputs of the linear discriminator for the last
100 trials of both correct and erroneous responses. We then search for

3The online version does not yet include the HMT denoising.

Fig. 5. Total human–machine performance after correcting human response
errors based on ERN detection as a function of classifier threshold. Note that
the minimum is not at zero, indicating that the underlying distributions deviate
from Gaussian.

TABLE I
SUMMARY OF ON-LINE ERRORCORRECTION FOREACH OF SEVEN SUBJECTS

the threshold that minimizes the error rate on these sets, i.e.,EHfFC+
CHfFE. We estimatefFC andfFE from the outputs we have saved,
and keep count ofEH andCH from the trials we have seen thus far.
The threshold is applied to a new sample that is not part of this training
set. Table I summarizes the results for each subject. An experiment
consists of about 600 button push responses of which 5%–20% are
incorrect. The middle column show the error rate before correction.
The average relative reduction in error rate for 7 subjects under online
processing is 21.4% � 21.7%. Note the large variance indicates very
large improvements for some subjects and no improvement or slight
degradations in performance for other subjects.

In practical applications, the error correction system will not have
access to the correct response. The parameters for the linear classifier
and the detection threshold must be derived from an initial training se-
quence and are kept constant during operation. The performance num-
bers reported here reflect this scenario in that we report classification
performance on the current trial using a classifier that is trained only
on information from previous trials.

IV. CONCLUSION

We have described a set of linear preprocessing and classification
algorithms for providing an accurate single-trial estimate of the ERN,
an EEG signal which has been found to correlate with perceived error.
The goal of measuring the ERN is to monitor a subject’s task specific
error rate and adapt an HCI to maximize overall performance. We have
shown initial results for both offline and online correction of subject
errors for an alternative forced choice visual discrimination task. Fu-
ture work will investigate generalization of the approach to other tasks,
particularly those which require more complex adaption of the HCI.
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Graz-BCI: State of the Art and Clinical Applications

G. Pfurtscheller, C. Neuper, G. R. Müller, B. Obermaier, G. Krausz,
A. Schlögl, R. Scherer, B. Graimann, C. Keinrath, D. Skliris,

M. Wörtz, G. Supp, and C. Schrank

Abstract—The Graz-brain–computer interface (BCI) is a cue-based
system using the imagery of motor action as the appropriate mental
task. Relevant clinical applications of BCI-based systems for control of a
virtual keyboard device and operations of a hand orthosis are reported.
Additionally, it is demonstrated how information transfer rates of 17 b/min
can be acquired by real time classification of oscillatory activity.

Index Terms—Brain–computer interface (BCI), event-related desyn-
chronization/synchronization (ERD/ERS), motor imagery, rehabilitation,
sensorimotor rhythms, virtual keyboard.

I. INTRODUCTION

Currently available brain–computer interfaces (BCIs) can be
grouped according to the kind of brain signals they process or the
mode of operation they depend on. Within brain signals, we can,
for example, differentiate between evoked potentials (EPs), slow
cortical potential shifts, and oscillatory electroencephalogram (EEG)
components. There are two main categories of mode-of-operation
implemented by BCI systems. Within the first category, brain signals
are analyzed in cue- or stimulus-triggered time windows either by
identifying changes in EPs [1] and slow cortical potentials shifts [2],
or quantifying oscillatory EEG components [3], [4]. These types
of BCIs, operating with predefined time windows, are generally
gathered under the term “cue-based” or “synchronous” BCI systems.
Within the second category, a continuous analysis of brain signals is
performed either with the purpose of detecting event-related potentials
or transient changes in oscillatory EEG components. This type of
BCI operates in an asynchronous mode. These are “noncue-based” or
“asynchronous” BCI systems and, therefore, have been referred to as
“asynchronous detectors” in as much as they operate on the basis of
movement-related potentials [5], [6].

In the last decade, work on the Graz-BCI has focused predominately
on characterizing and differentiating two or more brain states or EEG
patterns, respectively, associated with motor imagery in predefined
time windows (cue-based or synchronous BCI). Our research has
been focused on methods of parameter estimation and on testing a
considerable number of classifiers [7]–[9]. The currently implemented
discrimination method is capable of differentiating between two
brain states associated, in our case, with two different types of
motor imagery in defined time windows. It can achieve classification
accuracies from 80% up to 100% [4]. The neurophysiological basis for
the Graz-BCI is the fact that actual performance of a limb movement
and the imagination of the same movement activates similar cortical
areas, as abundantly demonstrated by functional magnetic resonance
imaging (fMRI) [10] and positron emission tomography (PET)
investigations [11]. Similarly, the quantification of sensorimotor
rhythms has shown that the spatiotemporal patterns of event-related
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