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Transcranial direct current stimulation (tDCS) is a safe and well-tolerated noninvasive meth-
od for stimulating the brain that is rapidly developing into a treatment method for various 
neurological and psychiatric conditions. In particular, there is growing evidence of a therapeu-
tic role for tDCS in ameliorating or delaying the cognitive decline in Alzheimer’s disease (AD). 
We provide a brief overview of the current development and application status of tDCS as a 
nonpharmacological therapeutic method for AD and mild cognitive impairment (MCI), sum-
marize the levels of evidence, and identify the improvements needed for clinical applications. 
We also suggest future directions for large-scale controlled clinical trials of tDCS in AD and 
MCI, and emphasize the necessity of identifying the mechanistic targets to facilitate clinical 
applications.
Keywords    transcranial direct current stimulation; Alzheimer disease; clinical trial.

Potential of Transcranial Direct Current Stimulation 
in Alzheimer’s Disease: Optimizing Trials Toward Clinical Use

INTRODUCTION

Alzheimer’s disease (AD) represents a major global health challenge whose prevalence is 
increasing along with the aging population. There is an urgent need for effective treatment 
options for the 24 million people currently living with AD.1 Unfortunately, despite inten-
sive drug development and research, AD remains without a cure, and current treatment 
options offer inadequate benefit in delaying its progression. While we await a cure for AD, 
our near-term approach is to improve its care by preserving functioning and delaying decline.

Noninvasive brain stimulation is rapidly developing as a nondrug treatment for use in 
a wide range of neurological and psychiatric conditions.2 One extensively investigated 
technique is transcranial direct current stimulation (tDCS), which involves delivering a 
low-intensity sustained electrical current to cortical tissue via scalp electrodes with the 
goal of modulating brain excitability and plasticity.3 Based on the cumulative effects of 
tDCS, a period of repeated sessions (e.g., daily) can be used to induce alterations in brain 
function that will have clinical effects.4-6

tDCS is a safe and well-tolerated treatment approach7,8 that can be easily combined with 
simultaneous rehabilitative activities (e.g., cognitive, motor, or psychotherapeutic). Di-
recting tDCS at a brain region activated during training can enhance the potency of that 
training, presumably based on the mechanisms via which tDCS can boost ongoing plas-
ticity.9-12 Since tDCS devices can be wearable and portable, they offer the further advan-
tage of providing treatment to patients at home and in other locations away from the clinic 
through telehealth.13,14 In this manner, patients can access tDCS treatment away from the 
clinic and thereby receive the necessary number of daily repeated applications over time 
so as to maximize its clinical benefit. 
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There is growing evidence of a therapeutic role for tDCS 

in ameliorating or delaying the cognitive decline in AD. As 
reviewed in detail elsewhere,6,15 clinical trials have found tDCS 
to be safe and tolerable for use in the AD population, with 
therapeutic benefits of preserving or even improving cog-
nitive functioning in the short term. However, clinical appli-
cations of tDCS remains restricted by the need for definitive 
clinical trials and the identification of the mechanisms un-
derlying its beneficial effects. Here we focus on optimizing 
the design of large-scale controlled clinical trials and iden-
tifying the mechanistic targets to facilitate clinical applica-
tions of tDCS. 

OVERVIEW OF tDCS

tDCS is a noninvasive brain stimulation technique that in-
volves passing a low-amplitude direct current (typically 1–2 
mA) through the brain via electrodes on the scalp (Fig. 1). 
The placement locations of the electrodes are determined 
based on the targeted brain region. A portion of the applied 
current that crosses the brain leads to polarization of neu-
rons,16 which in turn modulates excitability, synaptic effica-
cy,17 oscillations,18 plasticity,19,20 and other cellular processes 
that are key to cognitive function and learning.21 The elec-
trode polarity (anode or cathode) determines the direction 
of current flow, which influences the outcomes.8,22

Based on hundreds of clinical trials in patients with a wide 
range of neurological and psychiatric conditions, including 
studies of patients with mild cognitive impairment (MCI) 
and AD, tDCS has an extensive record of safety and tolera-
bility.7,23,24 Its advantages over other stimulation methods 
such as transcranial magnetic stimulation (TMS) include 
easier use, lower cost, and better tolerability (e.g., not asso-
ciated with seizures25,26). As also reported previously, the most-
common side effects involve transient sensations at the elec-
trode site and include tingling, itching, and a sensation of 
warmth, with no increased risk in the elderly.7,27 The safety 
and tolerability records extracted across our remotely super-
vised tDCS (RS-tDCS) randomized controlled trials (RCTs)10,28-30 
showed that the side effects in a subsample of older partici-
pants (n=45, age range=65–78 years) with various neurologi-
cal diseases (e.g., multiple sclerosis, Parkinson’s disease, and 
cerebellar ataxia) did not differ in either nature or frequen-
cy from those in a subsample of young adults (old vs. young 
adults: tingling, 71% vs. 68%; itching, 35% vs. 41%; warmth 
sensation, 37% vs. 42%).

CLINICAL POTENTIAL OF tDCS IN AD 

Notwithstanding the hundreds of clinical trials to date study-
ing the clinical effects of tDCS, there remains the need for 
Class I/II evidence to advance its clinical use.2 While the find-
ings have largely been encouraging, most clinical trials have 
been limited by small samples and/or suboptimal dosing. As 
summarized in Table 1, several RCTs of tDCS have been con-
ducted in AD or MCI over the last decade.

Dosing considerations
Preclinical model studies indicate that tDCS produces last-
ing changes in brain excitability (e.g., hemodynamic re-
sponse, functional connectivity, and neuroplastic chang-
es31-34) that are cumulative over repeated sessions, which is 
consistent with clinical neurophysiology.23,35-38 Further, mul-
tiple-session protocols induce larger effects in terms of be-
havioral changes than do single-session protocols.38-42

Several studies have adopting 10 or fewer applications,6 
which means that dosing may have been suboptimal for de-
finitive evaluations of its clinical effectiveness. It is notable 
that recent studies involving relatively large numbers of to-
tal sessions over extended periods tended to show more-
robust improvements in cognition with more-persistent ef-
fects,38,43,44 relative to trials with smaller numbers of sessions 
over shorter periods.42,45-48 This effect is mirrored through 
consistent findings across clinical studies, including in our 
own trials, showing that 1) a single tDCS session does not 
induce any meaningful behavioral response,42 and 2) behav-

Fig. 1. Transcranial direct current stimulation (tDCS) equipment, work-
ing principle, and modeling of the electric field distribution. (1) tDCS 
device: programmable session type (active or sham), stimulation du-
ration, and current intensity. (2) Dorsolateral prefrontal cortex (DLP-
FC) electrode montage (left to right, F3-F4 according to the interna-
tional 10-20 system). (3) Sponge electrodes.
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ioral changes only follow a sustained period of daily treat-
ment.49,50 Multiple RCTs have shown that repeated applica-
tion (i.e., ≥20 daily sessions) of tDCS targeting the dorsolateral 
prefrontal cortex (DLPFC) improves cognitive training out-
comes in healthy aging adults.11,42,48 Importantly, these chang-
es have also been linked to increases in the functional con-
nectivity in the DLPFC11 and in frontal lobe neurotransmitter 
concentrations.51

In previous trials there have also been wide variations in 
the dosing parameters applied to the electrode montage 
(functional targeting vs. lesion-based targeting), electrical 
current intensity, stimulation duration, and the number of 
applied stimuli, as well as in the application of simultaneous-
ly paired training activities across study designs. Four of the 
12 RCTs listed in Table 1 involved MCI patients, and the re-
mainder involved patients with mild or moderate AD. Al-
most all of these studies used anodal tDCS (i.e., with the an-
ode electrode over the target region) with a current of 2 mA 
for 20–30 min per session. The nominal target region varied, 
although the most-common target region was the DLPFC 
(left>right), F3-F4 according to the international 10-20 sys-
tem), while temporal targeting has been applied less, hence 
warranting further studies. The total number of sessions var-
ied markedly between 6 and 180, with the overall treatment 
duration varying between 2 days and 8 months.

We now know that neuroplasticity can occur throughout 
the lifespan, and the neuroplastic effects induced by tDCS 
have been demonstrated to be preserved in healthy elderly 
individuals.51-54 However, critical guidance concerning tDCS 
dosing parameters is needed in order to maximize its clini-
cal benefit in the presence of neurophysiological age-related 
changes;55 for example, age may affect the optimal current 
intensity27,56-58 and stimulation duration.59 Further, various 
factors such as the brain state, brain atrophy, and hormonal 
levels are likely to influence individual differences in response, 
and so they can ultimately be used to identify those who are 
most likely to benefit from treatment.6,27,60,61

Simultaneous pairing of tDCS with cognitive 
training
tDCS can target the neuromodulation of regions underlying 
cognitive impairments or be paired with simultaneous cog-
nitive training. When paired together with training tasks, 
the targeted region (functional targeting) is engaged both 
through the stimulation and simultaneous activity, which may 
produce a synergistic benefit. In MCI and AD, investigators 
have taken approaches to employ neuromodulation with 
tDCS with the goal of both improving cognitive functioning 
and ultimately delaying or even preventing its progressive 
decline. Studies have targeted stimulation of frontal or tem-

poral regions, often pairing with simultaneous cognitive train-
ing exercises.44,46 This approach activates the target region by 
the activity during the stimulation, and may lead to improved 
cognitive training outcomes. 

Only two RCTs have used cognitive training as an inter-
vention combined with tDCS (see Table 1)—such a com-
bined intervention may be especially effective in potentiat-
ing and strengthening the learning process.62 The simultaneous 
delivery of tDCS with cognitive training is broadly thought 
to increase potential neuronal firing and synaptic activity, 
which will selectively activate and reinforce the regions en-
gaged in the cognitive activity,63-65 with these positive effects 
being transferred to similar tasks.66-69 The findings of recent 
electrophysiological studies analyzing the mechanism of 
tDCS suggest that the long-term effects of tDCS are due to 
the enhancement of neural plasticity by modulating long-
term potentiation and depression in relevant neural net-
works.20,65 This combined approach may have the added 
benefit of prolonging learning effects after the treatment has 
ceased.70-73 As demonstrated by our previous work across 
neurodegenerative disorders, pairing DLPFC tDCS with 
cognitive training increases learning and performance out-
comes, and leads specifically to improvements in measures 
of vigilance.10,12,74-78

Long-term efficacy
No previous study has addressed the important question of 
the persistence of benefits. Due to the small number of trials 
with follow-ups longer than 1 month, further studies are need-
ed to determine whether the established effects of tDCS per-
sist over time once treatment has been discontinued. This 
question is critical when considering the potential of tDCS 
in preventing or delaying cognitive decline in MCI and AD 
patients over time.79

THE NEED FOR 
MECHANISTIC INSIGHT

For the outcome measurements of the latest RCTs in Table 1, 
basic and global cognitive assessment tools such as the Mini-
Mental Status Examination, Montreal Cognitive Assessment, 
and Clinical Dementia Rating were used the most, with most 
studies also including more-comprehensive measures for 
specific domains. Only one of the studies that evaluated psy-
chiatric symptoms found a significant improvement in de-
pression.80

However, only a handful of studies have used neuroimag-
ing or electrophysiological methods as secondary outcomes. 
Im et al.38 and Yun et al.81 used [18F]FDG positron emission 
tomography (PET) to visualize changes in the cerebral glu-



396  J Clin Neurol 2022;18(4):391-400

Potential of tDCS in Alzheimer’s DiseaseJCN
cose metabolism after tDCS, and both studies found signif-
icant positive effects. Recent studies using resting-state func-
tional magnetic resonance imaging or diffusion tensor imaging 
have also demonstrated the utility of advanced neuroimag-
ing tools for assessing the outcome of tDCS.82,83 Khedr et al.84 
measured motor cortical excitability using TMS and P300 la-
tency in event-related potentials at baseline and after tDCS 
sessions. In a subsequent study they measured the following 
blood markers for AD at baseline and after tDCS: tau, Aβ 
1–42, and lipid peroxidase.80 Thus, promising findings from 
the small number of trials using multimodal outcome mea-
sures warrant further studies taking advantage of the rapid 
advances in technology in clinical neuroscience in order to 
understand the complex therapeutic mechanisms of tDCS.

Various neurotransmitters have been suggested to be in-
volved in the mechanisms of the changes resulting from tDCS 
applications, including dopamine, acetylcholine, serotonin, 
glutamate, and GABA.85 For example, a PET investigation 
with [11C]raclopride demonstrated that applying a single ses-
sion of tDCS to the DLPFC induced dopamine release in the 
ventral striatum, which was associated with attention en-
hancement in healthy humans.86 Likewise, there is good evi-
dence from both animal and human studies for the strong 
involvement of the serotonin system in the antidepressant ef-
fect of tDCS on the DLPFC.87,88 More importantly for AD, 
there are accumulating data suggesting the pivotal role of 
the cholinergic neurons and their synaptic modulation in 
the changes induced by tDCS.85,89,90 Neurophysiological stud-
ies in animals have shown that cholinergic modulation facil-
itates long-term potentiation.91,92 Previous human studies of 
tDCS combined with an acetylcholinesterase inhibitor or 
nicotine patch also demonstrated the significant contribu-
tion of the cholinergic pharmacodynamic status on the dif-
ferent levels of neuroplasticity induced by tDCS.93,94 In ad-
dition, recent tDCS investigations involving MCI and AD 
patients demonstrated significant increases in cortical me-
tabolism in the areas relevant to cholinergic synaptic inner-
vation, such as the prefrontal, anterior cingulate, and medi-
al and lateral temporal cortices.38,81 A recent study utilizing 
magnetic resonance spectroscopy demonstrated increased 
GABA and a decreased ratio of glutamate to GABA after tDCS 
in older adults with or without MCI.95 To our knowledge, that 
is the only previous clinical trial of tDCS in AD or MCI that 
has employed outcome measures that can detect specific 
changes in each of those neurotransmitters, which should 
be seriously considered when planning future studies.

HOME-BASED tDCS USING REMOTE 
SUPERVISION IN DESIGNING 

CLINICAL TRIALS 

Both tDCS and cognitive training must be dosed in a sus-
tained and cumulative manner to induce an effect. However, 
as detailed above, previous trials of tDCS and cognitive train-
ing in AD or MCI have only allowed restricted conclusions 
to be drawn,96 due in part to the potential underdosing in 
terms of the frequency and number of treatment sessions be-
ing lower than those required for an optimal effect.97-99

We believe that trial designs have been restricted by prac-
tical obstacles associated with accessing treatment in the 
clinic. The logistical constraints of clinic-based treatment—
such as participant time and travel as well as costs for daily 
visits—have been a primary and practical limitation for the 
field in terms of sample size and suboptimal dosing of the 
number of sessions. To enhance access to treatment and en-
able protocols with extended treatment periods, we have val-
idated an RS-tDCS protocol that delivers treatment at home 
to as to overcome practical barriers to access and thereby fa-
cilitate cumulative dosing. There has been a strong demand 
for such at-home treatment across various neurological con-
ditions, including for people with multiple sclerosis, Parkin-
son’s disease, traumatic brain injury, and cerebellar ataxia, 
which have led to clinical applications.10,13,14,28-30,100-104 In the 
RS-tDCS protocol, participants are provided with remotely 
controlled tDCS devices, and they are extensively trained in 
their safe and effective operation. We apply real-time super-
vision in each tDCS session through live videoconferencing 
with extensively trained personnel who follow rigorous go/
no-go criteria during the daily treatments in order to ensure 
that the protocol complies with the laboratory standards of 
the tDCS devices.13,100,105 

The telehealth delivery of tDCS results in rapid enrollment 
and high retention and adherence rates in repeated and ex-
tended sessions (e.g., >97% completion rates across RCTs 
to date).10,13,14,28-30,100-104 Extensive testing over >7 years (cov-
ering >9,000 at-home tDCS sessions involving >400 patients 
to date) has verified the feasibility of our RS-tDCS proce-
dures for use across all ages (18–80 years), including in those 
with advanced cognitive or motor disabilities and/or low 
technical experience, and it also reaches those whose poor 
socioeconomic healthcare status impedes their inclusion in 
RCTs. Further, the RS-tDCS platform has facilitated con-
tinuing enrollments in ongoing RCTs during the restrictions 
to clinical research associated with the COVID-19 pandem-
ic, with >100 participants completing all study procedures 
from home.106-109 Only one previous study evaluated tDCS 
in the home setting, by providing unsupervised tDCS to pa-
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tients with mild AD over 6 months and without concurrent 
cognitive training activity.38 That study confirmed the safety 
and feasibility of the home use of tDCS in the AD popula-
tion, and also demonstrated the mild general cognitive im-
provements achieved, indicating that remotely supervised 
home-based trials can facilitate the design of further clini-
cal trials.38

CONCLUSIONS AND 
FUTURE DIRECTIONS

Further investigations are needed into the efficacy of tDCS 
and cognitive training with sufficient dosing over longer fol-
low-ups. The inclusion of biomarkers for guidance is critical 
to advancing the field and developing new therapeutic tar-
gets. With the goal of delaying progression, the MCI popu-
lation represents the earliest and best target group for fur-
ther evaluation. The effects on neuroplasticity in MCI can 
be investigated by including a sensitive biomarker of the un-
derlying mechanism. Finally, the additive effects of the com-
bined intervention of tDCS and cognitive training have not 
been thoroughly evaluated relative to applying tDCS and 
cognitive training separately in a study design with adequate 
intensity, duration, and scientific rigor.

Future clinical trials of tDCS in AD and MCI need to be 
performed under optimized conditions based on the accu-
mulating evidence for the importance of a longer follow-up. 
Namely, a sufficient number of sessions over an extended pe-
riod should be administered in conjunction with cognitive 
training. Outcomes should be assessed using a multimodal 
approach that includes neuroimaging, electrophysiological, 
or other AD-specific biomarkers in combination with con-
ventional neuropsychological testing. In order to gain a bet-
ter understanding of the mechanism so as to guide AD treat-
ments, further studies employing a specific biomarker that 
can sensitively detect modulation of the targeted neural sys-
tem are necessary. We propose that home-based RS-tDCS is 
a practical solution for promoting the clinical use of tDCS 
by the MCI and AD population. The next investigative steps 
could lead to tDCS and other noninvasive brain stimulation 
approaches representing an important clinical tool for the 
care of AD patients. 
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