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A feed-forward spiking network represents a non-linear transformation that maps a set of input
spikes to a set of output spikes. This mapping transforms the joint probability distribution of
incoming spikes into a joint distribution of output spikes. We present an algorithm for synap-
tic adaptation that aims to maximize the entropy of this output distribution therebycreating
a model for the joint distribution of the incoming point processes. The learning rule that is
derived depends on the precise pre- and post-synaptic spike timings. When trained on cor-
related spike trains the network learns to extract independent spike trainsthereby uncovering
the underlying statistical structure and creating a more efficient representation of the incoming
spike trains.

Introduction

Imagine that the goal of a biological neural network is to
maximize the information it communicates about its inputs.
If the transformation is deterministic then maximizing the
information transmission is equivalent to maximizing the en-
tropy of the outputs. This problem has already been solved
for abstract rate models where information is encoded in the
firing rate of a neuron for feedforward analog networks and
leads to standard independent component analysis (Anthony
& Terrence, 1995). Here we develop this idea for more re-
alistic networks of spiking neurons which can in principle
encode information either in the precise times of spikes or
via a population code utilizing firing rates. That is, for a set
of input spike patterns we address the question of how to
manipulate connection strengths between deterministic spik-
ing neurons so as to generate output spike trains with the
maximum entropy. In particular, detailed learning rules are
derived for the general Spike Response Model (SRM) (Ger-
stner & Kistler, 2002), a generalization of the Integrate-and-
Fire neuron. The analysis is restricted to a single layer feed-
forward network and relies on the assumption that neurons
fire at a rate which is relatively low compared to the time
constant of the refractory periods of the neurons. It differs
from previous information theoretic models in that it con-
siders a network of deterministic neurons rather than a sin-
gle isolated stochastic neuron (Bohte & Mozer, 2005; Toy-
oizumi, Pfister, Aihara, & Gerstner, 2005). A brief account
of our model appeared in conference form focusing on the
sensitivity of spike timing (Bell & Parra, 2005). Here we
establish the connection between increasing sensitivity and
maximizing information flow, and demonstrate how this cri-
terion can be used to extract common spike pattern from a
mixture, as well as re-code a correlated population code into
a more efficient representation.

Rather than maximizing output entropy directly we pro-
pose to maximize the likelihood of the input spike-times un-
der the assumption that the output follows the maximum en-
tropy distribution for a given rate, i.e. the output is a Poisson
process of fixed rate. This Maximum Likelihood (ML) ap-
proach maximizes the information transfer in the network,
and has the additional advantage of controlling the rate of
firing, and thus energy consumption, of the output neurons.
The resulting algorithm functions by maximizing the sensi-
tivity of the output spike train to variations in the input spike
train subject to limitations on channel capacity.

To demonstrate the generality and utility of this algorithm
we then show that it is capable of bothdemultiplexing a spike
timing code as well as recoding a correlated spatio-temporal
population code so as to make it more efficient. In the first
case, each input synapse carries a superposition of severalin-
dependent point processes (sources), and, by analogy to blind
source separation, the network learns to extract these sources
and send each to a different output neuron. In the second
test case, input spikes are generated by a set of inhomoge-
neous Poisson processes which respond to the position of a
particle in motion. This leads to input spike trains which are
highly correlated and thus redundant. In this case learning
decorrelates these inputs and creates a sparse representation
of position.

In both cases, we note that the objective function for learn-
ing seeks to maximize the sensitivity of neurons to the spike-
timings of their inputs. This is consistent with increasing
evidence that learning in real neurons is highly sensitive to
the relative timings of input and output spikes (Dan & Poo,
2004) via Spike Timing Dependent Plasticity (STDP) learn-
ing rules. Unfortunately, our result does not replicate allof
the empirical data, but seems only to capture the causal halve
of the STDP learning curve. This issue is addressed in the
Discussion section.

1



2 PARRA, BECK, BELL

This work gives a rigorous derivation for how to max-
imize spike-timing entropy in a deterministic spiking net-
work, and shows in particular how to maximize the sensi-
tivity of a point process obtained from a threshold crossing
mechanism. However, to facilitate the reading of the main
text a large portion of this material has been relegated to the
Appendix.

Likelihood of a Spike Train

A deterministic network of spiking neurons such as a
single-layer feedforward network of Integrate-and-Fire neu-
rons can be thought of as a transformation that maps a set of
input spike trains into a new set of output spike trains. The
spike trains of all the input neurons can be represented by the
firing times and the identities of the neurons firing. We will
denote these variables ast andi – a pair of vectors each with
one element per spike, so that the time of thekth spike istk
occuring in neuronik. Thus, the timing vector is composed of
real numbers, and the neural identities vector is composed of
integers which represent neuron indices. For a deterministic
mapping of spike trains,f : t, i → t′, i′, the likelihood of the
output spikesp(t′, i′) is given in terms of the likelihood of
the input spikesp(t, i) as (see Appendix A):

p(t′, i′) ∝ ∑
(t,i)∈S(t′,i′)

|TT T|−1/2p(t, i) . (1)

The sum in (t, i) extends over all the possible inputs that
lead to a specific output (t′, i′), i.e. the set of solutions
S(t′, i′) = {t, i|(t′, i′) = f (t, i)}. Matrix T captures the sensi-
tivity of output spike-times vs. input spike-times for a given
set of input and output neuronsi, i′, and is thus a Jacobian
matrix given by

T =
∂t′

∂tT . (2)

For a network of noiseless Spike Response Model (SRM)
neurons (Gerstner & Kistler, 2002) this sensitivity matrix
is derived in Appendix C. In the case of an over-complete
transformation, where the number of input spikes generates
a larger number of output spikes, this map is likely to be in-
vertible such that the observed output could only have been
generated by one specific input. In this case the sum con-
tains a single term giving an expression equivalent to what
was derived in (Shriki, Sompolinsky, & Lee, 2000):

p(t′, i′) ∝ |TT T|−1/2p(t, i). (3)

Since the elements of the matrixTT T grow with the num-
ber of spikes in the output layer, maximizing entropy directly
using Equation (3) can result in a network which fires at very
high rates. This is neither biologically plausible nor compat-
ible with the low firing rate assumption which will be used
to simplify the learning rule. Instead, we choose to minimize
the Kullback-Leiber divergence between the distribution of
the spikes observed in the output layer and maximum entropy
distribution for a set of point process with a given rate, i.e.
independent homogeneous Poisson processes. This is equiv-

alent to maximizing the likelihood of the observed pattern of
input spikes under the assumption that these spikes were gen-
erated by applying the inverse mappingf−1 : (t′, i′) → (t, i)
to output spikes generated from an independent Poisson pro-
cess with a given rate.

Specifically, if we defineq(t′, i′) as the probability den-
sity function of a selection of independent Poisson processes,
then

q
(

t′, i′
)

= ∏
i

q
(

n′i
)

, (4)

where

q(n) =
λn

n!
e−λ , (5)

andn′i is the spike count of theith output neuron andλ is a
free parameter which gives the desired mean firing rate of the
neurons in the output layer (see Appendix B).

The objective function for learning is then given by

−DKL
(

p
(

t′, i′
)

||q
(

t′, i′
))

=
〈

− logp
(

t′, i′
)

+ logq
(

t′, i′
)〉

(6)

=

〈

− logp(t, i)+
1
2

log
∣

∣TT T
∣

∣+ logq
(

t′, i′
)

〉

. (7)

Now, the first term in this sum is simply the entropy of the in-
put spike patterns and is independent of the parameters which
map input to output spikes. Thus minimizing divergence re-
quires only a consideration of the second and third terms of
the equation directly above. Rearranging some terms, we
obtain the log-likelihood of the input spike times under the
maximum entropy model

L ≡ 〈logp(t, i)〉 = DKL
(

p
(

t′, i′
)

||q
(

t′, i′
))

+

〈

1
2

log
∣

∣TT T
∣

∣+ logq
(

t′, i′
)

〉

≥

〈

1
2

log
∣

∣TT T
∣

∣+ logq
(

t′, i′
)

〉

, (8)

where we have used the fact that the KL divergence is a
positive definite quantity. This restates the well-known fact
that minimizing KL divergence is equivalent to maximizing
a lower bound on the log likelihood,L. In this case we are
dealing with the likelihood of the observed input spike-times
resulting (via the inverse mapf−1) from a set of independent
Poisson processes of given rate.

The second term of the resulting objective function in
Equation (7) captures the sensitivity of the likelihood on
spike timing. Maximizing this term will make the output
spike-times maximally sensitive to the timing of the input,
and thus, insure that the temporal information contained in
the input spike-times is transmitted optimally. The second
term encourages Poisson distributed spikes in the output neu-
rons and – as we will see in Section – leads to an Hebbian
term that controls the overall spike rate.

To maximize this lower bound we derive now the gradient
of these two terms with respect to the weights of the spiking
network.
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Figure 1. Firing time t ′k is determined by the time of threshold
crossing. A change of an input spike-timedtl affects, via a change
of the membrane potentialdu the time of the output spike bydt ′k.

Spike Time Sensitivity

For two spikes.

We will now discuss how the timing of a postsynaptic
(output) spike is affected by the timing of presynaptic (input)
spike. Spikel, occurring in presynaptic neuronjl , may have
an effect on spikek, occurring in neuronik, if they are con-
nected by a synapse with weightswi j. Since we are primarily
concerned with the dependency between different spikes we
will adopt a notation that omits explicit neuron index: We use
Wkl , the weight affecting output spikek due to input spikel,
to be the correspondingwi j = wik jl .

In the simplest version of the Spike Response Model (Ger-
stner & Kistler, 2002), spikel has an effect on spikek that
depends on the time-course of the evoked EPSP or IPSP,
which we write asRkl(t ′k − tl). In general, thisRkl mod-
els both synaptic and dendritic linear responses to an input
spike, and thus models synapse type and location. Note that,
technically,Rkl includes refractory effects and is thus also a
function of the time of the last spike of neuronk. However,
since we ignore this effect for the purposes of learning, this
dependence is not included explicitly here. See Appendix C
for details. For learning, we need only consider the value of
this function when an output spike,k, occurs.

In this model, depicted in Figure 1, a neuron adds up
the post-synaptic potentials evoked by all input spikes un-
til its membrane potential,ui(t), reaches threshold at time
t ′k. This potential we will, again for convenience, write as
uk ≡ ui(t ′k,{tl}), and it is given by a sum over spikesl:

uk = ∑
l

WklRkl(t
′
k − tl) . (9)

This notation may seem unfamiliar, but it has the advantage
that the sum over different input neurons and input spikes
is combined into a single sum over spikesl, while avoiding
cumbersome double indices. The notation exploits the defi-
nition,Wkl = wik jl , and is discussed in more detail in Section .

To compute the entries of the matrixT and then maximize
timing sensitivity, we need to determine the effect of a small
change in the input firing timetl on the output firing timet ′k.
(A related problem is discussed in (Banerjee, 2001).) When
tl is changed by a small amountdtl the membrane potential

will change as a result. This change in the membrane poten-
tial leads to a change in the time of threshold crossingdt ′k.
The contribution to the membrane potential,du, due todtl is
(∂uk/∂tl)dtl , and the change indu corresponding to a change
dt ′k is (∂uk/∂t ′k)dt ′k. We can relate these two effects by noting
that the total change of the membrane potentialdu has to
vanish becauseuk is defined as the potential at threshold. ie:

du =
∂uk

∂t ′k
dt ′k +

∂uk

∂tl
dtl = 0. (10)

This is thetotal differential of the functionuk = u(t ′k,{tl}),
and is a special case of the implicit function theorem. Rear-
ranging this:

dt ′k
dtl

= −
∂uk

∂tl

/

∂uk

∂t ′k
= −WklṘkl/u̇k . (11)

For over-complete N → M spike mappings

To maximize the information transfer in a possibly over-
complete mapping (M ≥ N) for a given set of spikes, we
must, according to (8) maximize the log-determinant of a Ja-
cobian matrix,TT T, where the entries ofT are the timing
dependenciesTkl ≡ ∂t ′k/∂tl . The calculation of this gradient
for the full Spike Response Model under the assumption of a
low firing rate is in Appendix C. It yields a learning rule in
which every interaction between a presynaptic spike attl and
a postsynaptic spike att ′k causes a weight change:

∆1Wkl ∝
∂ 1

2 log|TT T|
∂Wkl

=
Tkl

Wkl

(

[TT#]kl − [TTT#]kk
)

, (12)

whereTT# represents the pseudo-inverse ofTT . This is a
non-local update involving a matrix inverse at each step. In
theinfomax case, such an inverse was removed by the Natural
Gradient transform (see (Anthony & Terrence, 1995)), but in
the spike timing case, this has turned out not to be possible,
because of the complexity introduced into theT matrix by
theṘkl term in (11).

Neuron index vs spike index

We have denoted the synaptic weights for each neuron pair
as lower casewi j, and the synaptic weights for each spike
pair as upper caseWkl . These two matrices can be related by

W = IwJ . (13)

Matrix I has one column for each neuroni and one row for
each output spikek with Iki = 1 if spikek belongs to neuron
i and 0 otherwise. MatrixJ has one column for each input
spike l and one row for each input neuronj with J jl = 1 if
spike l belongs to neuronj. With this notation the corre-
sponding weight update for neuron pairs∆1w can be com-
puted from the gradient update for spike pairs∆1W given in
(12) with

∆1w = IT ∆1WJT . (14)
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Figure 2. Output firing rate as function of input firing rate (left)
and strength of EPSP or synaptic weight (right) for an Integrate-
and-Fire neuron. Rates are determined by the number of spikes
within a 500 ms observation window.

Spike Rate Sensitivity

When computing the gradients (12) the number of spikes
is fixed. Updating synaptic weights will affect the timing of
output spikes, but possibly also the number of output spikes.
In this section we deal with this dependency explicitly, and
derive an approximate expression for the gradient of the sec-
ond term in Equation (8). Unfortunately, unlike for spike
times there is no simple parameterized mapping from input
spikes to output spike counts. However, Figure 2 demon-
strates that a simple empirical relationship exists between the
number of output spikesn within a time window as a function
of the number of input spikesm and synaptic weightsw for
Spike Responce neurons of this type. Specifically, the spike
raten is well approximated by a linear relation in bothm and
w. Since the Integrate-and-Fire model combines the input
from multiple neuronsj additively it is fair to write

ni ∝ ∑
j

wi jm j (15)

so that the contribution to the gradient weight update due to
the spike rate can be computed as

∆2wi j ∝
∂∑i logq(ni)

∂wi j
= −g(ni)m j , (16)

whereg(n) = −∂ logq(n)/∂n. Applying Stirling’s approx-
imation1 of the factorial, logn! ≈ n logn− n, this becomes
g(ni) ≈ log(ni/λ) and we obtain a simple local Hebbian
learning rule reminiscent of the traditionalinfomax algo-
rithm(Anthony & Terrence, 1995). Note that whenni > λ
this gradient term is negative andni will be reduced. In the
opposite case the term is positive andni will be increased.
Therefore this term acts to maintain the spike rate at a chosen
valueλ.

Results

Demultiplexing spike trains

An interesting possibility in the brain is that specific ‘pat-
terns’ are embedded in spatially distributed spike timingsthat
are input to neurons. Several patterns could be embedded in
single input trains. This is calledmultiplexing. To extract and

propagate these patterns, the neurons mustdemultiplex these
inputs using its threshold non-linearity. Demultiplexingis
the ‘point process’ analog of the unmixing of independent
inputs in Independent Component Analysis. We have been
able to robustly achieve demultiplexing, as we now report.

We simulated a feed-forward network with 10 Integrate-
and-Fire neurons and inputs from 10 presynaptic neu-
rons. Time was discretized in 1ms bins (the SRM does
not suffer from numerical problems associated with tempo-
ral resolution); firing threshold was set constant to:ϑ =
1; post-synaptic potential was set to:R(τ, t) = R(t) =
(1− τs/τm)−1(exp(−t/τm)−exp(−t/τs)), with τm = 20ms,
τs = 5ms; and hyperpolarizing after potential to:η(t) =
−exp(−t/τr), with τr = 30ms (Gerstner & Kistler, 2002).
Learning combines the gradients (12) and (16),∆wi j =
∆1wi j + ∆2wi j, computed on the spikes generated during
many sample intervals each of 500 ms in length. All time
derivatives were computed numerically by differentiating
neighboring time points. The parameterλ which controls
the output spike rate was set to the average spike rate of the
input. The network learns to demultiplex mixed spike trains
which were generated randomly, as shown in Figure 3. For
a small number of neurons (up to 5) this demultiplexing is a
robust property of learning using the gradients (12) and (16).

However the final result of training is sensitive to the ini-
tialization of the weight matrix. As the number of neurons
increases we find only partial demultiplexing. However, we
obtain reliable results if the weight matrix is initialized, as in
this example, with the transpose of the mixing matrix. This
indicates that the training may be impeded by the existence
of suboptimal local minima of the cost function. We have
chosen this specific example as the correct result for more
complex multiplexing is not easily visualized.

Population Recoding

In a second experiment, input spikes were generated from
a population of independent Poisson neurons with Gaussian
tuning curves which respond to the position of a particle,
s ∈ [0,10), moving on a periodic domain (i.e. a particle mov-
ing beyonds = 10 reappears ats = 0). The particle follows a
Brownian motion with positive drift at a fixed velocity. The
tuning curve of each input neuron has a preferred position
which corresponds to the index of that neuron. Tuning curves
are chosen to be sufficiently wide so that nearly simultaneous
spikes in adjacent neurons are common. Since the position
of the particle is correlated in time and space, strong pos-
itive correlations exist between the induced spike trains and
many spikes seem to be redundant. See Figure 4. Application
of the proposed learning rule with a target firing rate which
is half the input rate yields a population code with sharper,
more localized tuning curves. This is achieved by learning an
asymmetric connectivity which strongly inhibits the firingof
neurons with a preferred particle position through which the

1 This implies that in our simulations weight updates according
to (16) are only executed after a sufficiently large number of output
spikes has accumulated.
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Figure 3. Unmixed spike trains. The input (center left) are 10
spike trains which are a mixture of 10 independent Poison processes
(top left). The network unmixes the spike train to approximately re-
cover the original. Bottom left panel show the recovered spike train.
Notice that every original spike corresponds to a spike duple in the
de-multiplexed output. The panels at the right show the mixing (top)
the synaptic weight matrix after training (center) and the product of
the two (bottom).

particle has already passed. Neurons with a preferred posi-
tion which lie in the direction of the particle’s motion are also
inhibited – so as to reduce the overall firing rate of the output
population – but to a much lesser extent.

This leads to a more efficient representation of particle
position at any given time. Specifically, we found that lin-
ear Fisher information per spike, as estimated from the vari-
ance of the Local Optimal Linear Estimator (LOLE) (Shamir
& Sompolinsky, 2001) applied to the entire spatio-temporal
pattern of spikes, increased by nearly 30%. That is, with half
as many spikes we were able to represent nearly two thirds
of the input information about particle position. This is es-
pecially compelling since the learning rule was attemptingto
maximize information about spike timing and has no knowl-
edge of particle position.

Spike Timing Dependent Plasticity

Finally, what about the spike-timing dependence of the
observed learning? Does it match experimental results? The
comparison is made in Figure 5, and the answer is no. There
is a timing-dependent transition between depression and po-
tentiation in our result in Figure 5B, but it is not a sharp
transition like the experimental result in Figure 5A. In ad-
dition, it does not transition at zero (ie: whent ′k − tl = 0),
but at a time offset by the rise time of the EPSPs. The spike
response model is inherently causal, a incoming spike can
only affect a subsequent spike. The strength of this depen-
dency is measured by the sensitivity matrixT. The learning
rule derived here modifies this dependency. The contribu-
tions to our weight update are as a result inherently causal.
Current models that result in non-causal (synaptic adaptation
for late spikes with∆t < 0) currently assume a probabilistic
effect due to noisy spike generation (Bohte & Mozer, 2005;
Toyoizumi et al., 2005). However, non-determinism in the
spike generating mechanism is probably not the reason for
the mismatch between our result and empirically observed
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−10 −5 00 500

2

4

6

8

10

time (ms)

Output Spike Trains

ne
ur

on

0 500

2

4

6

8

10

time (ms)

Input Spike Trains

ne
ur

on

Input Covariances

Neuron/time

N
eu

ro
n/

tim
e

Neuron/time

N
eu

ro
n/

tim
e

Input Covariances

0 5 10
−15

−10

−5

0

5
synaptic weights

preferred position

Figure 4. Population coding of the position of a particle moving
on a periodic domain. (Top, left) The 10 input neurons respond
by firing when the particle is within their receptive field. In this
example the particle moves from the preferred position of the 3rd
neuron to the preferred position of the 8th neuron within 500 ms.
(Top, right) The synaptic weights after training with 1 h of data.
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Figure 5. Dependence of synaptic modification on pre/post inter-
spike interval. Left (A): Reproduced from Froemke & Dan, Na-
ture (2002). Dependence of synaptic modification on pre/post inter-
spike interval in cat L2/3 visual cortical pyramidal cells in slice.
Naturalistic spike trains. Each point represents one experiment.
Right (B): According to Equation (12) and (16). Each point cor-
responds to an spike pair between approximately 100 input and 100
output spikes.

STDP curves, as we discuss in the next section.

Discussion

In summary, we have started to explore, through thinking
about timing sensitivity, how probabilistic learning of opti-
mal information transfer can be achieved in spiking network
models which are closer to known physiology. This holds
the appealing promise of bringing network theories of rep-
resentation and spike coding closer to biophysical theories
of dendritic computation, through the infusion of ideas from
unsupervised machine learning. We developed the theory for
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a single-layer network of spiking neurons. With the derived
learning rule, we were able to extract independent point pro-
cesses from dependent mixtures, analogously to Independent
Component Analysis (ICA) algorithms which do the same
thing for real-valued processes.

Our results are relevant in terms of neural coding theory
because they are the first to show how to use spikes to build
a density model of spikes. Also, since arguably the most
suggestive learning-based models of early cortical computa-
tion have been achieved with analogous rate-based network
models (Olshausen & Field, 1997; Bell & Sejnowski, 1997),
it is reasonable to expect similar advances in our understand-
ing of the coding of sensory inputs when the formalism is
extended to spiking neurons.

Our results and formalism may well turn out to be of gen-
eral use for finding independent processes in data which is
event-like, as opposed to continuous analog processes. Many
complex systems and communication systems are of this na-
ture, not just those in the brain. As our network is a probabil-
ity density model, it or something similar could prove useful
in the modeling of multivariate point-processes, a problemof
more general interest in statistics.

We believe we have also taken a step to close the gap
between known physiology and abstract learning princi-
ples. Physiological variables such as the shapes of EPSPs
and post-spike repolarisation curves, even the placement of
synapses in dendrites, are viewed here as parameters of a
probabilistic model that could also be learned. In principle,
anything that happens between input spikes and output spikes
could adapt to fit the statistics of the input spikes. Another
physiological variable, the voltage slope at threshold, has
an important probabilistic interpretation in this framework.
It controls the sensitivity to input timings (see (10)) and it
is thus inversely proportional to the probability of the input
spikes.

Despite these points, the complexity and non-locality
of our learning rule and the difference between its synap-
tic changes and those observed in Spike Timing-Dependent
Plasticity (STDP), force us to conclude that it cannot be con-
sidered as a candidate learning rule for real spiking neurons.
In addition, a closer look at the physiological literature on
STDP (Dan & Poo, 2004) reveals the importance, in the plas-
ticity calculation occurring at post-synaptic densities,of ac-
tion potentials back-propagating from the cell body to the
synapse. This feedback within a neuron is completely miss-
ing from the model described here. Since our model is causal
(see Figure 5B), and STDP is acausal (see Figure 5A), it is
natural to conclude that the inclusion of this feedback within
the neuron is necessary in order to account for the acausal
Long Term Depression (LTD) part of the STDP effect (the
left part of Figure 5A).
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Appendix A
Transformation of probability
density for over-complete and

mixed variables

To establish Equation (1) we will proceed in three steps.
First we will derive the transformation of a joint density func-
tion of continuous variables for the over-complete case as-
suming an invertible mapping. Then we will correct the ex-
pression for the case of a non-invertible transformation. Fi-
nally we will include discrete variables to have a transforma-
tion of a joint distribution of discrete and continuous vari-
ables.

In the first step we give an alternate derivation of the re-
sult in (Shriki et al., 2000) for over-complete mappings. A
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mapping,y = f(x), will transform a joint densityp(x) of the
input x to a joint densityp(y) of the outputy as

p(y) =
Z

dx p(y|x)p(x) . (17)

Since the mapping is deterministic the conditional densityis
given by

p(y|x) = δ(y− f (x)) . (18)

First note that for a transformation which preserves dimen-
sions, dim(y) = dim(x), the Kronecker delta distribution
around a solution,yo = f(xo), is transformed as

δ(y−yo) =

∣

∣

∣

∣

∂y
∂x

∣

∣

∣

∣

−1

δ(x−xo) , (19)

where| ∂y
∂x | = J is the Jacobian matrix evaluated atxo. To ex-

tend this to the non-square over-complete case, i.e. dim(y)≥

dim(x), definey‖ and y⊥ as the orientations atyo that are
parallel and orthogonal to the column space ofJ respectively.
Specifically,y‖ = (JT J)−1/2JT y, and similarly fory⊥ using
the orthogonal spaceJ⊥. Here the inner productJT y com-
putes the projection into the parallel space while(JT J)−1/2 is
the normalization required to preserve scaling (unit Jacobian
determinant,|∂(y‖,y⊥)/∂y| = 1). With this we can write

δ(y−yo) = 1δ(y‖−y‖o)δ(y⊥−y⊥o ) (20)

=

∣

∣

∣

∣

∣

∂y‖

∂x

∣

∣

∣

∣

∣

−1

δ(x−xo)δ(y⊥−y⊥o ) (21)

=

∣

∣

∣

∣

(JT J)−1/2JT ∂y
∂x

∣

∣

∣

∣

−1

δ(x−xo)δ(y⊥−y⊥o )(22)

=
∣

∣JT J
∣

∣

−1/2 δ(x−xo)δ(y⊥−y⊥o ) (23)

∝
∣

∣JT J
∣

∣

−1/2 δ(x−xo) , (24)

where we have applied (19) to the square transformations
y → (y‖,y⊥) and again tox → y‖. Note that (23) reduces to
(19) if the transformation is square and is therefore the gener-
alization to the non-square over-complete case. By combin-
ing Equations (17), (18), and (24) and executing the integral
in x it follows (as in (Shriki et al., 2000)) that

p(y) ∝
∣

∣JT J
∣

∣

−1/2
p(x(y)) . (25)

In the integration we have assumed that the transformation
was invertible so thatx(y) is uniquely defined. In case that
there are multiple inputs that can generate the same out-
put y the integral in (17) reduces to a sum over those so-
lutions (Papoulis, 1991). Denoting the set of solutions with
S(y) = {x|y = f(x)} we write

p(y) ∝ ∑
x∈S(y)

∣

∣JT J
∣

∣

−1/2
p(x) . (26)

In this paper we are interested in a mapping with contin-
uous and discrete variables. Adopting now again the nota-
tion of the main text this mapping is:(t, i) → (t′, i′). Equa-
tion (26) is equally valid if all probabilities are conditioned
on some discrete event, for instance the occurrence of some
discrete valuesi, i′. Therefore,

p(t′, i′) = ∑
i

p(t′|i, i′)p(i, i′) (27)

= ∑
i

∑
t∈St(t′,i′)

∣

∣TT T
∣

∣

−1/2
p(t|i, i′)p(i, i′) (28)

= ∑
i

∑
t∈St(t′,i′)

∣

∣TT T
∣

∣

−1/2
p(i′|t, i)p(t, i) (29)

= ∑
i∈Si(i,i′)

∑
t∈St(t′,i′)

∣

∣TT T
∣

∣

−1/2
p(t, i) . (30)

HereSt(i, i′) andSi(i, i′) are the set of solutions tot′ = t′(t, i)
andi′ = i′(t, i) respectively. For (30) we used the fact that for
a deterministic mapping,p(i′|t, i) = 1 if i′ is the result of the
map to input (t, i), and 0 otherwise.

Appendix B
Independent Poisson processes

Here we simplify the joint densityq(t′, i′) for a set of inde-
pendent Poisson processes. For a Poisson point process the
times of events are uniformly distributed, hence

q(t′, i′) ∝ q(i′) . (31)

We now introduce a new variable,n′, which indicates the
number of spikes that occurred in each neuron during the
observation time window. For any distribution we can write

q(i′) = ∑
n′

q(i′|n′)q(n′) . (32)

The spike count is deterministically dependent oni′ and
hence this sum only includes the term withn′ = n′(i′) since
otherwiseq(i′|n′ 6= n′(i′)) = 0. Furthermore, when the spike
counts are obtained from independent Poisson processes, the
index vector is uniformly distributed so that:

q(i′) = q(i′|n′(i′))q(n′(i′)) ∝ q(n′(i′)) = ∏
i

q(n′i) . (33)

Combining these Equations we obtain (4) in the main text.

Appendix C
Spike time sensitivity in the SRM

Here we give full details of the gradient ascent learn-
ing rule for Gerstner’s Spike Response Model (Gerstner &
Kistler, 2002), a generalization of the standard Integrate-and-
Fire model. In this formulation the effect of a pre-synaptic
spike at timetl in neuronjl on the membrane potential at time
t is described by a post-synaptic potential or spike response
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functionR(t − t̂i, t − tl), which may also depend on the time
of the most recent spikêti in post-synaptic neuroni.

This response function is then weighted by the synaptic
strengthwi j, which may represent either an excitatory or in-
hibitory synapses as determined by the sign ofwi j. In addi-
tion to the effects of̂t onR, refractoriness is also incorporated
through an additive hyper-polarizing term,η(t − t̂i). Thus,
total membrane potential of neuroni is given by

ui(t) = ηi(t − t̂i)+∑
l

wi jl R(t − t̂i, t − tl) . (34)

We have ignored here possible contributions from external
currents which can easily be included without modifying the
following derivations. The output firing timest ′k and indices
i′k are defined as the ordered set of times and indices for
which ui(t) reaches firing threshold from below. In the pres-
ence of a dynamic threshold,ϑ(t − t̂i), the output spike times
and indices are defined implicitly by the ordered set of solu-
tions to

t ′k = t : ϑ(t − t ′s) = ui′k
(t) = η(t − t ′s)+∑

l

wi′k jl R(t − t ′s, t − tl) ,

dui′k
(t)

dt
> 0. (35)

Note that we have replaced̂ti with t ′s, wheres = s(k) is
the index of output spike precedingt ′k on the same neuron.
This results from our indexing scheme which identifiest ′k as
the time of thek-th output spike regardless of which neuron
generated it. We find double indice notation cumbersome
and would like to omit therefore the explicit reference to pre
and post-synaptic indexi and j as they result implicitly from
spike indexk and l. The threshold condition which defines
post-synaptic spike times,t ′k, can be written in this simplified
notation as

t ′k : ϑ(t ′k−t ′s)= uk = η(t ′k−t ′s)+∑
l

WklR(t ′k−t ′s, t
′
k−tl) ,

duk

dt ′k
> 0,

(36)
where we also abbreviate,uk = ui′k

(t ′k), and use the capital
Wkl to indicate that this indexing scheme affects the synaptic
weights as well. See Section for an explanation of the exact
relationship betweenwi j andWkl .

Regardless, for this general modelTkl is given by

Tkl =
dt ′k
dtl

= −

(

∂uk

∂t ′k
−

∂ϑk

∂t ′k

)−1 ∂uk

∂tl

−

(

∂uk

∂t ′k
−

∂ϑk

∂t ′k

)−1 ∂uk

∂t ′s

dt ′s
dtl

. (37)

For stereotypedR(τ, t), η(t), andϑ(t) we now define

Ṙkl =
dR
dt

(t ′k − t ′s, t
′
k − tl) (38)

R̃kl =
dR
dτ

(t ′k − t ′s, t
′
k − tl) (39)

η̇k =
dη
dt

(t ′k − t ′s) (40)

ϑ̇k =
dϑ
dt

(t ′k − t ′s) (41)

u̇k = η̇k +∑
l

WklṘkl +∑
l

WklR̃kl , (42)

so that we may represent the recursion relationship of Equa-
tion (37) as

Tkl =
WklṘkl

η̇k − ϑ̇k +∑c WkcṘkc +∑c WkcR̃kc

+
η̇k − ϑ̇k +∑c WkcR̃kc

η̇k − ϑ̇k +∑c WkcṘkc +∑c WkcR̃kc
Tsl . (43)

In principle, this implicit expression for the matrixT may
be solved by iteration or by simply inverting the square ma-
trix associated with the second term. Unfortunately, the com-
plex dependence ofs on k causes this procedure to lead to a
rather complicated expression for the learning rule. This is-
sue can be avoided when the neurons have a low firing rate
(compared to their refractory period), or simply, when they
have a weak refractoriness. A low firing rate is not an uncom-
mon assumption in theoretical modes (Gerstner & Kistler,
2002), and in particular, it is a good assumption for our sim-
ulations. Both of these assumptions imply thatη̇k, ϑ̇k and
R̃kl are all small compared tȯRkl . When this is the case, the
second term of (43) may be neglected and the derivative of
this equation with respect toWkl is approximated by

∂Tab

∂Wkl
=

∂
∂Wkl

[

WabṘab

u̇a − ϑ̇a

]

= δakδbl
Ṙab

u̇a − ϑ̇a
−

WabṘabδakṘal
(

u̇a − ϑ̇a)
)2

= δakTab

[

δbl

Wab
−

Tal

Wal

]

. (44)

Therefore, since

T#T
ab ≡

1
2

d
dTab

log|TT T| =
[

T(TT T)−1]

ab , (45)

we may conclude that

1
2

∂ log|TT T|
∂Wkl

= ∑
ab

[T#T ]abδakTab

[

δbl

wab
−

Tal

Wal

]

(46)

=
Tkl

Wkl

(

[T#T ]kl −∑
b

[T#T ]kbTkb

)

(47)

=
Tkl

Wkl

(

[T#]lk − [TT#]kk
)

. (48)


