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Abstract—We present an algorithm for blindly recovering con-
stituent source spectra from magnetic resonance (MR) chemical
shift imaging (CSI) of the human brain. The algorithm, which we
call constrained nonnegative matrix factorization (cNMF), does
not enforce independence or sparsity, instead only requiring the
source and mixing matrices to be nonnegative. It is based on the
nonnegative matrix factorization (NMF) algorithm, extending it
to include a constraint on the positivity of the amplitudes of the
recovered spectra. This constraint enables recovery of physically
meaningful spectra even in the presence of noise that causes a sig-
nificant number of the observation amplitudes to be negative. We
demonstrate and characterize the algorithm’s performance using
31P volumetric brain data, comparing the results with two dif-
ferent blind source separation methods: Bayesian spectral decom-
position (BSD) and nonnegative sparse coding (NNSC). We then in-
corporate the cNMF algorithm into a hierarchical decomposition
framework, showing that it can be used to recover tissue-specific
spectra given a processing hierarchy that proceeds coarse-to-fine.
We demonstrate the hierarchical procedure on 1H brain data and
conclude that the computational efficiency of the algorithm makes
it well-suited for use in diagnostic work-up.

Index Terms—Blind source separation (BSS), chemical shift
imaging (CSI), hierarchical decomposition, magnetic resonance
(MR), magnetic resonance spectroscopy (MRS), nonnegative
matrix factorization (NMF).
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I. INTRODUCTION

ACCURATE and highly specific diagnosis of intracranial
tumors is critical for minimizing the morbidity and mor-

tality of brain cancer. Imaging plays an important role in such
diagnosis since there is a tradeoff between overaggressive re-
section of tumor and maintenance of critical brain function. Al-
though biopsy is still considered the gold-standard for diagnosis
and grading [1], it comes with significant risks including a 1.7%
mortality rate [2] and 8% chance of other serious complications
[3]. Structural magnetic resonance imaging (MRI) has played
an important role as a noninvasive modality for determining
tumor extent, grading, and monitoring treatment and tumor re-
occurrence. The specificity of MRI for initial diagnosis, how-
ever, is highly variable (between 30% and 90% [3], [4]) and de-
pends on tumor type. Magnetic resonance spectroscopy (MRS)
is a comparatively new diagnostic method that was adopted into
clinical practice approximately ten years after MRI. Automated
sequence development has paved the way for increased MRS
application in clinical radiology, with more reliable and user-
friendly hardware, improved data analysis, and confidence of
interpretation [5]–[7].

Chemical shift imaging (CSI) is an imaging modality whereby
high-resolution MR spectra are acquired across a volume of
tissue [8]. In vivo CSI can measure different biochemical markers
by tuning to particular nuclear resonance frequencies, thus
providing precise characterization of tissue and/or a means for
optimizing the signal-to-noise ratio (SNR). The more common
nuclei include H (proton), C (carbon), F (fluorine), and P
(phosphorus). CSI allows for the noninvasive characterization
and quantification of molecular markers with clinical utility for
improving detection, identification, and treatment for a variety
of diseases, most notably brain cancers [9]–[11].

Tumor H MR spectra are characterized by the signal in-
tensity change of several important brain tissue types and
metabolites. Signal intensity of N-acetyl-aspartate (NAA,
single resonance peak at 2.02 ppm) is reduced in tumors, with
NAA thought to exist primarily in viable neurons [12]. Choline
(CHO, singlet at 3.22 ppm) is typically elevated compared with
normal brain tissue and is thought to be due to accelerated
membrane synthesis of rapidly dividing cancer cells [13], [14].
Creatine (CR, singlet at 3.04 and 3.9 ppm) is often reduced
in tumors, but the significance of decreased CR in terms of
tumor metabolism is not clear. Lactic acid (LAC, doublet at
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1.33 ppm) is often observed in tumor spectra [10], [15]–[17],
which is partially due to the preference for anaerobic glycolysis
[18] often prominent in highly metabolic tumors [5]. Combined
with MRI, CSI can provide an integrated biochemical and
morphological view of biological tissue and disease processes.

The interpretation of CSI data is quite challenging: a typical
dataset consists of hundreds of spectra, typically having low
SNR with peaks that are numerous and overlapping. Sophis-
ticated and accurate approaches for quantitation of resonance
peaks in a single spectrum (either the time or frequency do-
main) are widely available in the NMR community (for reviews
of these methods refer to [19], [20]). However, when applied
to CSI data, these methods produce a long list of peak-areas,
which have to be additionally analyzed for successful interpre-
tation. Moreover, the spectra on CSI datasets are closely related
and this has created the need for approaches that can analyze
an entire set simultaneously, taking advantage of the relation-
ships among the spectra to improve the quality of the analysis.
Approaches that are able to do this are particularly useful for
spectra with low SNR as they utilize the collective power of the
data. Here, we present such a method that identifies the shapes
of the underlying constituent source spectra and their contribu-
tion to each voxel in the CSI data.

In CSI, each tissue type can be viewed as having a charac-
teristic spectral profile or set of profiles corresponding to the
chemical composition of the tissue. In tumors, for example,
metabolites are heterogeneously distributed and in a given voxel
multiple metabolites and tissue types may be present [17], [21],
[22]. The observed spectra are, therefore, a combination of dif-
ferent constituent spectra. The signal measured in CSI is the re-
sponse to a coherent stimulation of the entire tissue. As a result,
the spectral amplitudes of the different coherent resonators are
additive. The overall gain with which a tissue type contributes to
this addition is proportional to its concentration in each voxel.
As a result, one can explain the observed spectra as

(1)

where the columns in represent the concentration, or abun-
dance, of the constituent materials and the rows in their corre-
sponding spectra. represents additive noise. The abundance
matrix has columns (one for each constituent) and rows
(one for each voxel). and have columns (one for each reso-
nance band). Fig. 1 shows an example of an axial slice taken from
a three-dimensional (3-D) P CSI acquisition of human head.

Since we interpret as concentrations, we can assume the
matrix to be nonnegative. In addition, since the constituent
spectra, , represent amplitudes of resonances, in theory the
smallest resonance amplitude is zero,1 corresponding to the
absence of resonance at a given frequency. The factorization of
(1) is, therefore, constrained by

and (2)

In CSI, however, noise may lead to violations of the positivity
constraint of the observed absorption spectra. Thus, the ob-
served spectra, , may have negative values.

1In this paper, we do not consider cases where spectra may have negative
amplitudes, for example in the case of J-modulation.

Fig. 1. Example P CSI data from Ochs et al. [27]. Shown is an 8� 8 voxel
axial slice of spectra taken of the brain from a healthy subject. Spectra near the
edges are almost exclusively noise. The complete dataset consists of 512 voxels
with spectra of 369 resonance bands. The chemical shift range is approximately
5 to �20 ppm.

Conventional MR spectra analysis often imposes an explicit
or parametric model for , and considers one voxel at
a time, , to invert the linear problem with the
constraint that (i.e., a constrained least-squares problem
[23], [24]). Here, is the index of matrices and , repre-
senting the th voxel, and and are, respectively, the obser-
vation vector and constituent abundance vector of the th voxel.
More recently, there have been efforts to simultaneously exploit
the statistical structure of multivoxel spectra to solve (1) as a
blind source separation (BSS) problem. For example, Nuzillard
et al. [25] use second-order blind identification (SOBI) [26]
to separate C spectra. Ochs et al. [27] formulate (1) within
a Bayesian framework to simultaneously solve for and .
Using a Markov chain Monte Carlo (MCMC) procedure, they
sample the posterior space of subject to the likeli-
hood (the noise distribution) and priors , .
These priors include positivity and sparseness in and ; how-
ever, they make no assumptions about orthogonality or inde-
pendence. Their results have shown good separation for highly
correlated constituent spectra. However, the approach is com-
putationally expensive, given the MCMC procedure.

In this paper, we describe a fast algorithm that exploits only
the nonnegativity of and for blindly separating multivoxel
CSI data. The algorithm is based on the nonnegative matrix
factorization (NMF) algorithm of Lee and Seung [28], [29].
Due to noise, negative components may appear in the obser-
vations, and therefore we further develop the NMF approach,
within a maximum likelihood framework, to include a posi-
tivity constraint forcing negative amplitude spectral values in
the recovered sources and abundance distributions to be approx-
imately zero. The method can be viewed as a subspace reduction
with negative values of the constituent sources forced to zero,
i.e., forced to the edges of a polygonal conic subspace spanned
by the constituent spectra. We term this algorithm constrained
nonnegative matrix factorization (cNMF). Although no sparsity
constraint is applied, the algorithm can recover sparse spectra
quite well. The cNMF algorithm is four orders of magnitude
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faster than the Bayesian MCMC approach and converges to the
same solution for absorption spectrum mixture, multivoxel CSI
data. We further develop cNMF and show how it can be applied
hierarchically, automatically removing residual water and lipids
and recovering specific spectral signatures of tissue types using
a coarse-to-fine decomposition strategy. Computationally, this
framework is very efficient and can thus be used when a patient
is in the MR scanner.

In the following, we describe the cNMF algorithm and
present results for P and H multivoxel CSI datasets.
Section II begins by formulating NMF within a maximum
likelihood framework and describes how we have modified the
NMF algorithm of Lee and Seung to introduce a constraint
for ensuring positivity of the sources given noisy observations
that may be negative. We also describe the role dimensionality
reduction plays in recovering the sources. Section III describes
how we incorporate cNMF into a hierarchical framework for
systematically increasing the specificity of recovered spectral
sources. Section IV then presents results, including a character-
ization of the algorithm’s performance as a function of the SNR
level, as well as examples of how the hierarchical framework is
able to recover spectra indicative of malignant tumors.

II. CONSTRAINED NONNEGATIVE MATRIX FACTORIZATION

We begin by reviewing the formulation of the NMF algorithm
of Lee and Seung [28]. The basic idea of the algorithm is to
construct a gradient descent over an objective function that op-
timizes and and, by appropriately choosing gradient step
sizes, to convert an additive update to a multiplicative one. For
example, with modeled as Gaussian noise (a reasonable as-
sumption for CSI data), one can formulate the problem of re-
covering and as a maximum likelihood estimation

subject to: (3)

where is the standard deviation of the Gaussian noise and
its mean.

Maximizing the likelihood is equivalent to minimizing the
negative log-likelihood, and (3) can be written as

subject to: (4)

Defining the negative log-likelihood as , the
gradients of for and are given by

(5)

where , , and are indexes for the matrices of and , as
, , and . Using the

gradients, we can construct the additive update rules

(6)

Note that there are two free parameters, which are the
step sizes of the updates. Lee and Seung show that by
choosing the step sizes as and

, the additive update rule can be
formulated as a multiplicative update rule, with being
a fixed point. The multiplicative update rules for and ,
therefore, become

(7)

where Lee and Seung prove, using an auxiliary function, con-
vergence of these update rules to a least a locally optimal maxi-
mization likelihood solution [29]. By formulating the updates as
multiplicative rules in (7), we can ensure nonnegative and ,
given both are initialized nonnegative and the observations, ,
are nonnegative. However, one problem is that, due to Gaussian
noise in CSI data, the observations can have negative values.
Since all observations are used in updating and , nonnega-
tivity will not be guaranteed even if they are initialized as non-
negative. This can lead to physically unrealistic solutions for the
recovered spectra, i.e., spectra with negative amplitudes.

We modify the algorithm by first adding an initialization step
for the matrices, constructing a nonnegative random and es-
timating by solving a nonnegatively constrained least-squares
problem

subject to (8)

Before solving this least-squares problem, we must define
the dimensionality of our matrices, namely choosing , the
number of recovered sources. An important element of the algo-
rithm is the fact that the factorization in (1) includes an explicit
subspace reduction from an -dimensional space into a con-
strained -dimensional space. Such a compression or “bottle-
neck” has been shown to be useful in having the subspace cap-
ture statistical regularities in the data [30], [31]. Except for the
positivity constraints, the decomposition is completely arbitrary
within that -dimensional space. However, spectra and con-
centrations are nonnegative and so the -dimensional degrees
of freedom within that subspace are constrained by
linear boundary constraints (2). This is the portion of the space
that corresponds to realistic solutions of the factorization. We
disallow negative spectral magnitude values and instead assume
that they are due to baseline noise. This is enforced by intro-
ducing a threshold constraint on

(9)
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where is some very small positive value.2 We treat symmet-
rically, using the same positivity constraint as mentioned above.
This ensures and remain nonnegative, given the possibility
of negative values in . To summarize, the procedure for up-
dating and is as follows.

1) Initialize: Choose dimensions of and (i.e., ) and
initialize with nonnegative values (e.g., random and con-
strained least-squares for ).
2) Update [according to (7)].
3) Force negative values of to be approximately zero.
4) Update [according to (7)].
5) Force negative values of to be approximately zero.
6) Iterate (back to 2).

We call this the constrained nonnegative matrix factorization
(cNMF) algorithm.

An intuitive understanding of cNMF via geometrical consid-
erations can be developed. The manifold of possible solutions
specified by (1) and (2) represent an -dimensional polygonal
cone spanned by the rows of . Positivity constraints on
the spectra require that the row vectors of , representing the
edges of the cone, lie in the positive hyper-quadrant of the -di-
mensional space. Points defined by the rows of the observa-
tions fall within that polygonal cone. The additive noise in
the probabilistic model allows points to fall outside this cone
with a certain likelihood. The aim of maximum likelihood is
to find cone edge vectors that tightly envelope the observed

-points with the smallest possible deviation on the boundaries.
By constraining negative values of the vectors in to be ap-
proximately zero, we force some polygon edges onto the bound-
aries (or edges) of the positive quadrant. This will possibly in-
crease the noise required to explain points that fall outside the

-polygonal cone.
Based on Lee and Seung’s convergence proof for NMF [29],

Constraint (9) will not change the convergence characteristics of
the cNMF algorithm, although the speed of convergence may be
reduced. However, a least-squares initialization is useful for im-
proving the speed of convergence. An empirical demonstration
of convergence for cNMF is given in [32].

III. HIERARCHICAL RECOVERY OF SOURCE SPECTRA

A. Hierarchical cNMF Decomposition

The cNMF algorithm can be applied hierarchically, with the
spectral recovery and subspace reduction constraining which
observations are used in the next hierarchical level of recovery.
A flow diagram, shown in Fig. 2, illustrates the basic idea. The
approach enables a “drilling down” of the source space, ulti-
mately increasing the specificity of the recovered spectra based
on a natural, and physically meaningful, hierarchy (e.g., head,
brain, tumor, proliferation/grade, etc.). We consider two types
of hierarchical decomposition, single-resolution and multireso-
lution, described below.

2Note that the spectral amplitudes cannot be set exactly to zero given the
update rules forA and S. We therefore use � = 2:2204� 10 (the value of
floating point relative accuracy used by MATLAB 6.5)

Fig. 2. Hierarchical blind recovery. At the first level, an image (data volume)
having a given resolution is used as observations for recovering source spectra
(e.g., 1, 2, and 3 shown in the figure). The source spectra are analyzed given prior
information about the spectral signatures (e.g., spectra for brain versus muscle)
and their spatial distributions (e.g., location of the head/brain in the image and
its approximate shape). The result is the construction of a spatial mask, used for
selecting those voxels which will be processed at the next level. At the second
level, only those voxels passing through the mask are used as observations and
cNMF is reapplied to recover new source spectra (e.g., 1 , 2 , and 3 ). This
process is iterative and continues until the desired specificity is reached. Note
that the hierarchy can be constructed using images having the full resolution at
each level, or constructing the hierarchy on a pyramid, thus proceeding from
coarse-to-fine resolution.

B. Single-Resolution Hierarchical Decomposition

In single-resolution hierarchical decomposition, each level of
analysis uses spectral images at the same spatial resolution, ef-
fectively integrating prior knowledge about spatial distributions
of brain-like spectral signatures into the cNMF source spectra
recovery. Principal component analysis (PCA) is used to prepro-
cess the spectra, much in the same way as in Ochs et al. [27],
to align spectra, select voxels containing signal, and estimate
the number of sources (see [33] for details). cNMF is then ap-
plied to recover constituent spectra, and the corresponding spa-
tial distributions at this level are analyzed. The spectrum corre-
sponding to the largest abundance/concentration in central parts
of the spatial distribution map is taken as brain. The spatial dis-
tribution map corresponding to the selected brain spectrum is
thresholded to automatically generate a mask for the next hi-
erarchical level. This mask selects voxels for the next level of
processing. The masking can be seen as a form of active data
selection [34] for improving the specificity of the separation,
with voxels removed by the mask considered to be signals not
containing significant brain tissue (e.g., water, lipids, etc.).

The selected voxels in the mask are used in the next hierar-
chical level of cNMF source recovery. Again, PCA is used to de-
termine the number of constituent spectra at this level and cNMF
is used to recover source spectra and their corresponding spatial
distributions. Due to the application of the mask in the previous
level, the observations are more specific to brain. Again, the
brain-like spectrum is selected and a mask is generated based
on the corresponding spatial distribution map. This procedure
continues until the desired number of levels (and specificity) is
reached. The highest level in the hierarchy returns the recovered
spectra and spatial distribution maps.
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Fig. 3. P spectral separation results using cNMF. (a) cNMF recovered spectra, (top) source 1 and (bottom) source 2. Source 1 shows sharp �ATP peaks centered
at �18.62 ppm with PCr at �2.52 ppm, indicative of muscle tissue. Source 2 shows �ATP centered at �18.92 ppm with PCr at �2.52 ppm, which is indicative
of brain tissue. Inset shows the spatial distribution of the recovered spectra for the fifth slice as axial relative concentrations of muscle and brain spectra. Note that
these images are upsampled from 8 � 8 to 64 � 64 for visualization purposes.

C. Multiresolution Hierarchical Decomposition

In a multiresolution hierarchical decomposition, each level
of analysis uses different spatial resolution spectral images for
cNMF source recovery. PCA is again used to align the spectra
and estimate, level-by-level, the number of source components.
For example, when a three-level hierarchy model is used with
the original spectral image having a resolution of , the
next level is constructed to be by averaging four
neighboring spectra and subsampling in each dimension by two.
The third level in the hierarchy is constructed from the second
level using the same procedure, resulting in a
spectral image.

Starting with the lowest (coarsest) hierarchical level, all
spectra are input into cNMF, with the number

of components having already been determined via PCA.
Different from the single resolution case, PCA is not used to
select signal voxels at the coarsest resolution; rather, all voxels
at the coarsest resolution are used. As in the single resolution
hierarchical case, recovered spectra are analyzed together with
their spatial distributions to construct a mask consisting of
brain-like spectra. This mask, constructed from the coarsest
resolution, is up-sampled to and applied to
the image in the hierarchy. Only voxels that
pass through the mask are considered to contain brain tissue
and used to estimate and at the next level. The process
proceeds to the highest (finest) resolution.

Since the multiresolution hierarchical decomposition aver-
ages over voxels in computing the lower resolution spectral im-
ages, features may be filtered (i.e., blurred) which are specific

to spectra of interest. Thus, some care must be taken to set the
number of levels of the hierarchy (in practice, we have used
three). However, the advantage of the multiresolution hierar-
chical decomposition is a significant reduction in computational
cost (discussed in Appendix I).

IV. EXPERIMENTAL RESULTS

We first demonstrate the cNMF algorithm using P CSI data
of human brain, comparing results to two other decomposition
methods, both in terms of fidelity of recovery and speed. We
then demonstrate the hierarchical cNMF framework for H CSI
data, showing how the approach enables an increased specificity
of tissue type to be recovered.

A. P Chemical Shift Images of Human Brain

In this experiment, P spectra of human head data from
Ochs et al. [27] are used. This dataset comprises 256 H decou-
pled P spectra of typical peak SNR of approximately 6, which
are selected by choosing axial slices with signals from 512
spectra (8 8 8 voxels) obtained by spatial and temporal
fast Fourier transforms. Data were acquired from an entire
human head using a quadrature dual tuned head coil on a 1.5-T
Siemens Magnetom clinical imager/spectrometer operated with
sequence details as follows: 250- s radio-frequency pulse was
followed by triangular 2.1-ms phase encode gradients applied
in each of the three orientations and acquisition of 512 points
(256 ms). CSI datasets were acquired in 8 8 8 arrays (512
points in time) with six acquisitions per phase encoding step
and s, field-of-view 240 mm.
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Fig. 4. Plots of full spectral dataset (observations), cNMF reconstructions,
and residual for P head data: each plot consists of 256 spectra having 369
resonance bands, each shown from left to right, together with an average across
all the spectra (at the far right). (a) The observations, with low SNR and large
variations apparent. (b) Reconstruction from the solution shown in Fig. 3.
(c) Residuals. Compare to [27].

After preprocessing with PCA (described above), the
matrices have dimensions: source components,

voxels, and resonance bands. After run-
ning cNMF for 100 iterations, the negative log-likelihood is
minimized and the recovered spectra are shown in Fig. 3. It
is clear that the recovered spectra are highly correlated and,
therefore, any orthogonality assumption is inappropriate and
would not lead to physically meaningful results. The results
are consistent with the underlying biochemical characteristics

Fig. 5. P spectral separation results using NNSC. Sparse control parameter
� = 1, learning rate � = 1. (a) Results of all observationX are input into the
algorithm iteration (NNSC 1). (b) Results of only positive components ofX are
input into the algorithm (NNSC 2).

of the tissue, with the top spectrum being indicative of muscle
and the bottom of brain tissue. The inset in Fig. 3 shows the
fifth axial slice of the mixing matrix , which can be viewed
as the relative concentration of the recovered spectra. In this
case, we see the muscle spectrum is concentrated near the skull
border while brain spectrum is largely internal to the muscle.
The recovered spectra are nearly identical to those found
using BSD; results are shown in [27]. However, the cNMF
algorithm only requires 0.48 s to converge while BSD takes
12 000 s (2.3-GHz Intel Processor). Fig. 4 shows plots of the
data, reconstruction from the cNMF algorithm, along with the
residuals. The residual error is an order of magnitude smaller
than the data and reconstruction.

We next compare cNMF to a similar decomposition algo-
rithm. Nonnegative sparse coding (NNSC) [35] is a method for
decomposing multivariate data into nonnegative sparse compo-
nents which combines sparse coding and NMF. In linear sparse
coding, the goal is to find a decomposition in which the hidden
components are sparse, with probability densities that are highly
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Fig. 6. Plots of NNSC reconstruction and residuals for P head data: (a) and (b) are reconstruction and residuals using all observations [spectra recovered in
Fig. 5(a)] and (c) and (d) are the reconstruction and residuals when only using the nonnegative observations [spectra in Fig. 5(b)]. Note the larger residuals compared
to cNMF.

peaked at zero and have heavy tails. This implies that the data
can be well represented using only a few nonzero coefficients.
Combining the goal of small reconstruction error with that of
sparseness, one can arrive at the following objective function to
be minimized:

(10)

where and are indexes of matrix . The tradeoff between
sparseness and accurate reconstruction is controlled by the pa-
rameter , whereas the form of defines how sparseness is mea-
sured. To achieve a sparse code, the form of must be chosen
correctly: a typical choice is , although similar func-
tions that exhibit smoother behavior at zero can be chosen for
numerical stability.

We used an existing implementation of NNSC [35]3 and com-
pared results for this dataset. Since NNSC requires all values in

to be nonnegative, we evaluate the algorithm (1) using all ob-
servations (NNSC 1) and constraining negative recovered values
to be approximately zero, results shown in Fig. 5(a) and (2) con-
straining all negative elements in the observation vectors to be
zero (NNSC 2), results shown in Fig. 5(b). We note that the re-
covered spectra are not as well separated as cNMF, as evidenced
by the large magnitude of the residuals shown in Fig. 6. Al-
though both algorithms are very fast, cNMF converges to a more

3MATLAB code from http://www.cns.nyu.edu/~phoyer/.

physically meaningful solution, while at the same time not im-
posing an explicit assumption on the sparsity of the constituent
spectra. Furthermore, NNSC is very sensitive to the choice of
and ; if not appropriately chosen, the algorithm will diverge or
oscillate. cNMF has no such parameters to set.

B. P Artificial Mixture Data

To evaluate the performance of the cNMF algorithm as a func-
tion of SNR, we construct artificial mixtures from known target
spectra with varying amounts of zero mean additive Gaussian
noise. In real data, the relative SNR is approximately 6, and
we therefore evaluate performance of the algorithm for relative
SNR levels in the range 0.1–10. For each SNR level, we mea-
sure the root mean square (rms) error of the recovered spectra

(11)

where and are the targets (known sources). We compute
after initialization with quadratic programming

and after 100 iterations of updating to convergence . We
then compute the ratio of the two

(12)

This ratio measures how well the cNMF updating improves
the separation over the initialization by quadratic programming.
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Fig. 7. Recovery error versus SNR level for cNMF. As the level of the SNR
decreases, separation quality decreases, relative to the initialization provided by
quadratic programming.

In addition demonstrates the overall error of the cNMF al-
gorithm and can be used as a metric for comparing with other al-
gorithms. Results for are shown in Fig. 7. We see that the
cNMF updates dramatically improve separation over a quadratic
programming solution at all SNR levels , though
as expected the effect is much less at low SNR levels.

We compare cNMF to NNSC (NNSC 1 and NNSC 2) in
Fig. 8. Since cNMF and NNSC use different methods for ini-
tialization, we compare them using . For all tested SNR
levels, cNMF performance is better than NNSC. When the SNR
is greater than 1, for NNSC is more than two times larger
compared to cNMF, resulting in poor quality of separation. As
SNR further decreases to 0.2, neither algorithm gives reason-
able separation results.

C. Hierarchical Application on H Brain Data

Results of applying the cNMF algorithm hierarchically
for two cases of H CSI human brain data are given below.
32 32 voxel axial view H spectra of human brain are used,
with each voxel having a spectrum of 1024 resonance bands.
The H CSI data were recorded on a 1.5-T GE Signa Horizon
5.x MR system using the multislice sequence of Duyn et al.
[36] with ms, field-of-view 240 mm,
32 32 phase-encoding steps with circular k-space sampling,
receiver bandwidth 1 kHz and 256 sample points along the
signal acquisition (time) domain. The raw data were sorted
by slice, zero-padded to 1024 sample points, and then 3-D
Fourier transformed to yield 1024 frequency-domain spectral
voxels.

First, we show results for the single-resolution hierarchical
decomposition. For both datasets, PCA analysis estimates three
or four sources at the first level of the hierarchy. This is con-
sistent with the head, at a coarse level, consisting of 3–4 pri-
mary tissue/biochemical types: brain, lipids, and water. Recov-
ered sources for the first level of the hierarchy are shown in

Fig. 8. Comparison of recovery error versus SNR level for cNMF, NNSC 1,
and NNSC 2. Clear is that cNMF performance is better than NNSC for all tested
SNR levels.

Figs. 9(a) and 10(a). Analysis of both the spectra and spatial dis-
tributions clearly shows recovery of brain tissue, residual lipids,
and water (in the sinuses). The results at the first level of hi-
erarchical processing are then used to automatically generate a
mask for the second level of the hierarchy, i.e., source recovery
is constrained to include only those observations consistent with
brain tissue. Recovered spectra and their corresponding spa-
tial distributions for the second level of hierarchical processing
are shown in Figs. 9(b) and 10(b). From Fig. 9(b), we see the
three recovered spectra are consistent with normal brain tissue,
high-grade tumor tissue, and residual lipids. The spatial distri-
bution of these markers is also shown. Thus, the hierarchical
approach improves the specificity of recovered sources. Similar
improvement in specificity and tumor delineation and extent are
seen in Fig. 10(b), where a low-grade tumor is well separated
from normal brain tissue.

The multiresolution hierarchical decomposition is also eval-
uated for these data. A three-level hierarchy is used (32 32,
16 16, and 8 8). Recovered spectra and their corresponding
spatial distributions are shown in Figs. 11 and 12. Comparing
the results of the multiresolution hierarchical decomposition to
the single-resolution hierarchical method, we see that at the
highest level of the hierarchy they yield nearly identical results.
However, the important distinguishing factor of the two hier-
archical decompositions is that the multiresolution method is
computationally less expensive (see Appendix I). Run-time for
the two algorithms, including preprocessing, averaged 23.4 s for
the single resolution hierarchy vs. 16.3 s for the multiresolution
hierarchy (Pentium 2.3 GHz).

V. DISCUSSION AND CONCLUSION

In this paper we present a fast algorithm for blindly recov-
ering source spectra in CSI. The algorithm is an extension of
Lee and Seung’s NMF, where we include an explicit positivity
constraint in the updating equations to recover physically
meaningful spectra when there are negative observations due
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Fig. 9. Single-resolution hierarchy separation results of H CSI human brain data case 1. (a) First-level separation results. First row is the recovered spectra,
and second row is the spatial distribution of each recovered spectra. Shown in the spectra are biochemical markers for brain (fourth column) with peaks for CHO,
CR, and NAA. Note that the corresponding spatial mapping of these markers maps to the region of the brain. Column 2 is a recovered spectrum for a misaligned
lipid artifact. The fact that this is lipid is clear from the spatial distribution. Voxels having significant concentration of this spectrum are removed from subsequent
analysis by the masking procedure. (b) Second-level separation results. Column 1 spectrum is indicative of normal brain tissue: low CHO, high CR, and high NAA;
column 2 spectrum indicates high-grade malignant tumor tissue: highly elevated CHO, low CR, almost no NAA, and LAC peak appearance; column 3 spectrum
indicates residual lipids.

due to noise. We term this the constrained NMF algorithm
(cNMF), which converges very rapidly and results in stable
solutions for multiple initial conditions. cNMF can be viewed
as a maximum likelihood approach for finding basis vectors in
a subspace. The basis vectors are found such that they enve-
lope the observed L-points with the smallest possible deviation
from the boundaries. In cNMF only nonnegativity constraints
are used, with no explicit sparsity, independence, or orthog-
onality assumptions, though the algorithm recovers sparse
sources quite well.

Experiments on P and H CSI data testify to the perfor-
mance of the algorithm. For the P CSI results, recovered
spectra are clearly consistent with brain and muscle, the two
dominant sources, with their physical interpretation further
validated by the corresponding spatial distribution maps. Re-
sults for noisy artificial mixtures shows that cNMF recovers
target spectra, for a variety of noise levels, and in all cases with
greater fidelity than similar decomposition algorithms.

We also demonstrate how cNMF can be incorporated into
hierarchical decomposition framework, enabling a “drilling
down” into source space, with increasing specificity of the
recovered spectra based on a natural and physically meaningful
hierarchy (e.g., head, brain, tumor, proliferation/grade, etc.).
The hierarchy can be cast within a multiresolution processing
structure to reduce computational cost. The hierarchical decom-
position algorithms are nearly automatic, except for threshold
selection (i.e., the threshold on the eigenvalues of PCA for
selecting the number of sources and the threshold for con-
structing the spatial mask) and selection of the number of levels
in the hierarchy.

H MR has shown that, in tumors, metabolites are hetero-
geneously distributed and in a given voxel multiple metabolites
and tissue types may be present. The observed spectra are there-
fore a combination of different constituent spectra, and are quite
variable within and across subjects. This heterogeneity creates
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Fig. 10. Single-resolution hierarchy separation results of H CSI human brain data case 2. (a) First-level separation results. The layout of the figure is same as
in Fig. 9. Shown in the second column spectrum are biochemical markers for brain. Also recovered are the sinuses (column 3) indicated by a water peak as well
as a physically realistic spatial distribution for lipids (columns 1). (b) Second-level separation results. Column 1, 2, 4 spectra are indicative of normal brain tissue:
low CHO, high CR, and high NAA. Note the small amount of residual water (fourth column at 4.7 ppm); column 3 spectrum indicates low-grade cancerous tissue:
moderately elevated CHO, significantly decreased NAA, and appearance of LAC peak.

two immediate practical issues: 1) which spectrum should be se-
lected for diagnosis given intrasubject variability and 2) what is
a clear marker of disease given intersubject variability? In terms
of the first issue, often the spectra of voxels within an MRI con-
trast-enhancing region are considered. However, this may not
always be appropriate as some tumor types are nonenhancing.
In addition, the center of the enhancing region in large tumors
may be necrotic, while the proliferative boundary may be dis-
tributed across multiple mixed voxels. Thus, it would be benefi-
cial to have a separate spectrum for each constituent tissue type
rather than for each voxel.

With regard to the second issue, conventional spectral anal-
ysis estimates the relative concentrations of different metabo-
lites by measuring the intensity of the resonance lines associated
with each metabolite [37]. Relative metabolite concentrations
are then used as a diagnostic index for disease. For example,
the Choline-NAA index (CNI) measures how far the concentra-
tion ratio of CHO to NAA differs from the values of a normal

brain. Many such relations can be defined including concentra-
tions of other metabolites such as Lactate, Glycine, Glutamate
and Glutamine, Lipids, myo-Inositol, and more. However, given
heterogeneity of tumor spectra, it is difficult to define a strict re-
lation between metabolite concentrations and pathology [5].

The proposed method of cNMF has the potential to address
both these problems. By representing each spectrum as a linear
combination of constituent spectra one obtains a set of spectra
that are the same across different voxels, i.e., the variability
due to volume effect is removed. This should help overcome
the difficulties of diagnostic classification. In addition, one ob-
tains spectral images, which quantify the relative abundance of
metabolites or tissue type contributing to observed spectrum in
each voxel.

The goal of this work has been to demonstrate the poten-
tial clinical diagnostic value of the proposed method on brain
tumors using routine long echo time (TE) spectra. Future re-
search will consider short TE spectra, which have been shown
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Fig. 11. Multiresolution hierarchy separation results of H CSI human brain data case 1. (a) First-level separation result, resolution 8� 8. The layout of the figure
is the same as in Fig. 9. (b) Second-level separation results, resolution 16 � 16. (c) Third-level separation results, resolution 32 � 32. As in the single resolution
case, the multiresolution hierarchical decomposition recovers spectra indicative of a high-grade malignant brain tumor (column 3).

to provide much richer diagnostic and prognostic information
in small research studies. Current clinical practice does not
consider short TE spectra as their analysis is complicated by
severe spectral overlap and the variability of spectral profiles.
However, we believe that the proposed spectral separation
technique holds promise for short TE acquisitions, which in
fact are more strongly constrained by nonnegativity of the
resonance spectra.

APPENDIX I
COMPUTATIONAL COST OF THE HIERARCHICAL

DECOMPOSITION

Given an observation matrix, , of dimension , con-
centration mixing matrix of dimension , and source
component matrix of dimension , we compute the com-
putational cost of the hierarchical decomposition.
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Fig. 12. Multiresolution hierarchy separation results of H CSI human brain data case 2. (a) First-level separation results, resolution 8 � 8. The layout of the
figure is the same as in Fig. 9. (b) Second-level separation results, resolution 16� 16. (c) Third-level separation results, resolution 32� 32. Low-grade brain tumor
spectra (column 4).

According to multiplicative update rule in (7), the computa-
tional cost for every update of and is

multiplications and additions. Since we assume
the number of recovered sources is much less than the number of
observations and dimensionality of the data ( and

), we can neglect the issue of different numbers of sources at
each level in the hierarchy contributing to the total computa-

tional cost. Thus, for a two-level single-resolution hierarchical
decomposition, the computation cost is ( multiplications,

additions)

(13)
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For a three-level multiresolution hierarchical model, the first
level of observation voxels are downsampled t o , the
second level with the third level having the original
number , so at each update step the computational cost is

(14)

Comparing (13) and (14), we can see the cost of a three-level
multiresolution decomposition is approximately 2/3 of a two-
level single-resolution decomposition, which saves significant
computational time.

For the results in Fig. 10, , , , and
a two-level single-resolution decomposition model is used, so
the computation cost for each step is 5.0 10 multiplications
and additions, respectively. For the results in Fig. 12, ,

, , and a three-level multiresolution decompo-
sition model is used. Here, the computational cost for each step
is 3.3 10 multiplications and additions, which is about 66%
of the cost of a two-level single-resolution hierarchical model.
This computational cost savings is without any loss in separa-
tion quality, and in fact the separation results of the three-level
multiresolution hierarchical decomposition are somewhat better
than those of the two-level single-resolution, e.g., in Fig. 12 the
tumor is more pronounced than in Fig. 10.
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