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Abstract—Unrsupervised feature extraction by a stochastic neural network can be defined as a minimization of the
redundancy between the elements of the output layer, given complete information transfer from input to output. Redun-
dancy minimization can be achieved by minimization of the mutual information between the units of the output layer.
Complete information transfer is enforced by maximizing the mutual information of the input and output. With these two
conditions we define a novel learning algorithm for stochastic recurrent networks. The minimum of redundancy corre-
sponds to the extraction of statistically independent features, leading to a factorial representation of the environment.
The resulting learning rule includes Hebbian and anti-Hebbian learning terms. These two terms are weighted by the
amount of information transmitted in the learning synapse minus the grade of redundant information in the correspond-
ing output neuron, giving thus, an information-theoretic interpretation of the proportionality constant of Hebb's biolo-
gical rule. Simulations demonstrate the performance of this method. When a retina is simulated, the learning algorithm
Sforms decorrelated receptive fields. This represents the first experiment that extends the results of the linear principle
component analysis to the nonlinear case by a direct implementation of Barlow’s principle of redundancy reduction for
unsupervised features extraction by receptive fields formation in a retina model. © 1997 Elsevier Science Ltd.

Keywords—Boltzmann machine, Redundancy, Factorial codes.

1. INTRODUCTION

One of the most important tasks of cognition is to detect
"statistical coincidences"” in any combination of sensory
stimuli. As indicated by Barlow (1989), a cognitive
system needs to know whether a combination of sensory
input (a sensory event) is an expected or an unexpected
event. The brain tries to find causal relationships beween
the sensory environment and the motor actions and con-
sequences it plans to take. A well known principle intro-
duced among others, by Zipf (1949) and by Attneave
(1954) states, that the nervous system may be preproces-
sing the information of its sensory inputs in order to
extract statistically independent features. In his seminal
work Barlow (1989) related this problem with the prin-
cipal objective of unsupervised learning. A perceptual
system generates internal state representation of an
unknown environment to represent external events. The
aim of unsupervised learning is to find a set of features
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(symbols) to represent the messages such that the occur-
rence of each feature is independent of the occurrence of
any other, i.e., that the extracted classes or features are
non-redundant. This kind of learning is called factorial
learning. This means that the joint probability of the
internal states can be decomposed in the product of
statistically independent probabilities. The result of the
unsupervised learning described above is an internal
factorial code that represents the sensorial inputs.

At the same time Linsker (1988, 1989, 1992) proposed
the well known concept, called ‘‘infomax’’, derived from
information theory. According to it, synaptic weights
adapt in a constrained fashion in order to maximize
mutual information between input and output layers of
a cortical network. Atick and Redlich (1990) demon-
strated that statistically salient input features can be opti-
mally extracted from a noisy input by maximizing
mutual information. The works of Redlich (1993a, b),
and Atick and Redlich (1992) concentrate on the original
idea of unsupervised learning of Barlow where feature
extraction is handled as redundancy reduction. Some
algorithms were developed for maximizing mutual infor-
mation by using probabilistic linear neurons (Linsker,
1992) or nonlinear neurons (Linsker, 1989; Becker,
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1992). In the linear case the infomax principle is related
to the principal component analysis when deterministic
networks are used (no noise on the output) and the cov-
ariance of the input noise is a diagonal matrix (Foldiak,
1989). Rubner and Tavan (1989), and Foldiak (1989)
proved that a network composed of linear neurons can
be trained to perform the principal component analysis, if
the synaptic adaptation is defined as Hebbian in the ver-
tical sense, i.e., from input to outputs, and anti-Hebb for
the inhibitory lateral synaptic connections between the
output units. The Hebbian and anti-Hebbian form of the
learning rules can be derived from first principles using
Information theoretic concepts (Linsker, 1988; Kuehnel
& Tavan, 1990).

In this work we define a learning paradigm for a recur-
rent stochastic neural network that performs nonlinear
and factorial feature extraction. By maximizing the
mutual information between sensory inputs and output
of the network we generate an internal representation
without loss of information. At the same time the mutual
information between the output neurons is explicitly
minimized in order to eliminate the redundancy between
the extracted features. The result leads to a factorial code
that represent the sensory events without loss of informa-
tion. In this way we extend the unsupervised learning
principle of Barlow for probabilistic nonlinear neurons
and for networks which include recurrences. The learn-
ing algorithm can be interpreted as a weighted combina-
tion of Hebbian and anti-Hebbian rule.

The weighting term is the amount of information
transmitted in the learning synapse minus the grade of
generated redundancy, giving thus an information-theo-
retic interpretation of the constant of Hebb’s biological
rule. Correlated neurons will reinforce the synapses iff
for these channels no information loss and no redundancy
is introduced. We demonstrate the performance of the
model on five different standard experiments where a
factorial code can be found. We also simulate a simple
retina model, in which case the learning algorithm forms
decorrelated receptive fields, that extract statistical inde-
pendent features from the retina. This gives us an inter-
pretation and mechanism of formation of receptive fields
in the visual cortex (see also Rubner & Schulten, 1990;
White, 1992).

2. THEORETICAL FORMULATION

The present model is based on a stochastic neural net-
work architecture with separated input and output units.
The basic concept for this model was first introduced as a
Boltzmann machine by Ackley et al. (1985). We ignore
possible hidden neurons for the sake of simple presenta-
tion. (The extension of the formalism for hidden neurons
is straightforward). Let us label the state of the output
units by «. Fig. 1 represents a network without hidden
units. The Boltzmann—-Gibbs distribution of the states of
the output neurons for a fixed input pattern y can be
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FIGURE 1. Stochastic neural architecture with direct and lat-
eral synaptic connections.

written as,
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where E*7 is the energy function,
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In eqn (1), P, denotes the conditional probability of the
possible configurations o of the output neurons given
pattern + at the input. In eqn (2) S7' denotes the value
of the output neuron ‘‘#”* for the output configuration o.
The parameter (3 in eqn (1) is related to the inverse of the
temperature. If the connections w;; between the neurons
are symmetric, than an energy function can be defined
and the statistical mechanics Boltzmann—Gibbs distribu-
tion gives the probability of finding the system in a deter-
mined state S given the external fields 4{. Asymmetric
synapses w;; in Lyapunov functions might be used as
well. This case was described thoroughly by Schiirmann
(1989). The synapses W; connect the external input
vector X with the net and don’t have to be symmetric.
The external input vectors X” assume real values that
may be drawn from a given probability distribution P.,
with v labeling the input patterns. We point out that the
input units should not be understood as Ising spins. For a
concrete y-pattern they are fixed, and determines a fixed
external field.
The probability P; that the neuron i is in state 1 can be
defined in terms of the probabilities P, and P, as,

Pi=) SiPy= D S{PunPy 3)
o v, o

In order to implement factorial learning, at first the
information should be transferred to the output neurons.
Secondly the generated probability distribution of the
individual output neurons should be statistically
independent.

The information theoretic concept we are suggesting
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involves the measurement of entropies. These can all be
expressed in terms of the probabilities P, and P,,. Let us

define the entropy H(a/y) of the joint distribution of the

outputs for a fixed input vy and the entropy H(a) of the
joint distribution of the outputs independent of a special
input,

H (@)= — D Py Y PulogPuy @)
¥ o

H(a)= — D P,logP,

=7 vaszlog (ZPvPa/7> ®)
¥ a v

The first objective of learning will be achieved by max-
imizing the transfer of the information from the input to
the output layer. A general measure of the transmitted
information introduced by Shannon (1948) is the mutual
infomation (MI), which can be expressed in terms of the
defined entropies. We refer to the mutual information
between input and output as ‘‘vertical’’ mutual informa-
tion (MIV). It can be written as

MIV =H(a)+ H(y) — H(at,¥)= — H(ody) + H(xx) (6)

= D P, D Ponlog(Pasy)
Y o

- va ZPO,,.,log (Z Pvpafv) @)
Y o« Y

The mutual information is always positive and the max-
imum value of M1V is H(y), i.e.

0=<MIV <H(y) ®)

The second objective of learning is to generate a factorial
output code, i.e., to extract statistically independent fea-
tures. This implies that the occurrence of each symbol,
i.e., each active output unit, is independent of the occur-
rence of any other. Statistical independence among the
binary output units can be expressed by the condition

P=[]Psi=sH=T1tP+a-s0-P) O

As pointed out by Atick and Redlich (1992), factorial code
is equivalent to a vanishing mutual information between
the output units. This mutual information will be labeled
“horizontal’” (MIH). Tt is defined as the difference
between the sum of the entropy H(j) of each output “‘j”’
and the entropy of the joint output states H(c),

MIH= Y H()—H(®) =0 (10)
i

The sum over the single neuron entropy H(j) is usually
called ‘‘bit entropy’’ and is defined by,

> HG)= D S¢P;+(1—SHlog(1—P)) (11)
j J
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The identity in eqn (10) is equivalent to eqn (9). This
means that a factorial code (eqn (9)) is obtained by mini-
mizing the horizontal mutual information, which is a
measure of the grade of ‘‘dependency’’ among the out-
puts. The unsupervised learning that we introduce in this
paper for a stochastic network described by eqn (1) con-
sists in maximizing MIV up to its upper bound H(y) and
minimizing MIH. We therefore choose the following cost
function,

C=(H(y)—MIV)+MIH 12)
= D H()+H(a,7) - 2H(e) (13)
J

Here the entropy H(a,7y) of the joint probability distribu-
tion of the input data and output neuron states is given by

H(0,¥)= — D PoaylogPuy = — 3 P,Py,10g(P,Py,)
Y, Y, &
(14)

In order to minimize C we perform gradient descendent
corrections of the weights. This yields the following
learning rule

aC acC
id . ld
w;}ew_wg, _n.a_ij, vvgew VVS _n._a_ij (15)

where 7 is a learning constant. In the following learning
rules are derived

B
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The interpretation of the obtained unsupervised learning
rule is interesting. A Hebbian term is given by Si'S/" in
eqn (16) representing the instantaneous correlation
between the neurons. The term — (S;5)), is an anti-
Hebbian term given by the averaged correlation
between the neurons. These terms are the weighted
sum over all possible states, where the weighting
factor is the difference between the information trans-
mitted from input to output and the redundancy in the
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FIGURE 2. (a) Evolution during learning of experiment 1 of
the vertical and horizontal mutual information (M/V) and
(MIH) when unsupervised learning includes only maximiza-
tion of the transmission of information. (b) Evolution during
learning of experiment 1 of the vertical and horizontal mutual
information (MIV) and (MIH) when unsupervised learning
includes maximization of the transmission of information
with minimization of redundance.

output layer. In other words, the channels that transmit
information without giving redundance at the output
(factorial code) will be reinforced with the Hebbian
rule. The anti-Hebbian term is weighted with the same
factor and takes the average over all possible channels
into account, representing that way a forgetting factor.
We obtain a weighted correction according to whether
the activation of the postsynaptic cell exceeds its aver-
age value. This holds also true for the connections
between input and neurons.

G. Deco and L. Parra

TABLE 1
Nonuniform Distributed Patterns (Exp. 1)
P, Code | Code F-a Code F-b
02 001 001 101
0.3 011 011 111
0.3 110 010 010
0.2 111 110 110

3. EXPERIMENTAL AND RESULTS

3.1. Implementation of the Learning Rule

We have implemented the learning rule given by eqns
(16) and (17). This learning rule requires the calculations
of the probability P, with eqns (2)—(4) and of the prob-
ability P, by summing P, over the training patterns. We
calculate this probabilities for all possible , i.e., for the
2" states of the output layer with n output neurons. Now
let us analyse the complexity of the algorithm that
performs the unsupervised learning. Assume, the input
has d dimensions and the number of training patterns is
N. The complexity of the algorithm that calculates an
update for all weights is O(dxnxNx2"), which is the
same as in an equivalent Boltzmann machine.

In the next section we demonstrate some applications
of the unsupervised redundancy reduction learning with
the presented stochastic network. We apply the learning
paradigm to different benchmark problems for factorial
learning defined in the literature (see Barlow et al., 1989;
Hentschel & Barlow, 1991; Schmidhuber, 1992).

3.2. Binary Coding and Compression Experiments

The goal of the following examples is to find a nonlinear
invertible transformation of a binary input code I in a
factorial output code F. The invertability is assured by
perfect transmission of input information into the new
code F. We will consider non-uniform distributions
P, of the input code I, since these distributions
showed empirically to be more challenging when
used in re-coding and compression tasks. We differ-
entiate between a local and a distributed code. In a
local representation each input pattern has only one
non-zero bit. In the distributed representation the
code is distributed on different active bits. Therefore
the distributed representation can code in a d-dimen-
sional vector 2° different binary inputs. In our exam-
ples both representations will be considered.

TABLE 2
Nonuniform Distributed Patterns (Exp. 1)
Code Bit entropy MIH MIvV R (%)
| 2.85 - - 45
F-a 2.60 0.63 1.97 32
F-b 1.97 0.00 1.97 0
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TABLE 3 TABLE 5
Nonuniform Distributed Patterns (Exp. 2) Coding Geometric Progressions (Exp. 3)
P, Code | Code F-a Code F-b Code Bit entropy MIH MV R (%)
1/9 0001 10 11 1 4.33 - - 45
2/9 0010 11 01 F 2.99 0.0 2.99 0
2/9 0100 01 10
5/9 1000 00 00

In the following subsections we will use the definition
of redundancy as given by Barlow et al. (1989). It
is based on the definition of the mutual information,
that we called horizontal, given in eqn (10). The redun-
dancy R is the horizontal mutual information normalized
by the entropy of the joint distribution. It measures
how far a given code diverges from a factorial represen-
tation. Here it is given for the distribution of the input
coordinates.

_ 2H()-HE)

R Hy)

3.3)

3.2.1. Experiments 1 and 2: Non-uniform Distributed
Input Patterns. In the first example the input code I
consists in four patterns with nonuniform input distribu-
tion in a distributed representation (see Table 1). Three
input dimension and three output dimension are used.
The input bit entropy is 2.85 and the entropy of the
patterns distribution is H(y) = 1.97. Fig. 2a shows the
evolution of the vertical and horizontal mutual informa-
tion, where unsupervised learning includes only maximi-
zation of the transmission of information. Fig. 2b shows
the same for the case, where the unsupervised learning
rule includes maximization of the transmission of
information with simultaneous minimization of redun-
dance. In both cases MIV is maximized reaching its max-
imum possible value H(y) = 197, and yielding,
therefore, a revertible code. However, in the first case
the redundancy is not taken into account, and therefore,
the horizontal mutual information increases during learn-
ing yielding a redundant code F-a (see Fig. 2a). In the
second case eqn (16) is used, i.e., MIV is maximized and
MIH is minimized yielding an invertible and factorial
code F-b. The values of the entropies for code I and
the generated codes F-a and F-b after training are pre-
sented in Table 2.

Table 1 shows the input code I, its distribution, the

TABLE 4
Nonuniform Distributed Patterns (Exp. 2)
Code Bit entropy MIH MV R (%)
| 3.03 - - 65
F-a 1.91 0.06 1.84 3.8
F-b 1.84 0.00 1.84 0

invertible factorial code F-a corresponding to Fig. 2a,
and the invertible but non-factorial code F-b correspond-
ing to Fig. 2b.

The following is a specific example used also by
Schmidhuber (1992), where the input patterns are non-
uniformly distributed. It is an interesting case, since only
one factorial code (F-b in Table 3) and many other inver-
tible codes with low redundancy exist here. The results
are summarized in Tables 3 and 4. The codes F-a and F-b
are 2-dimensional and correspond to the results of unsu-
pervised learning by maximizing MIV without and with
minimization of MIH respectively. The input entropy of
the patterns is H(y) = 1.84.

For the input code I we have used a 4-dimensional,
redundant, local distribution.

3.2.2. Experiment 3: Coding Geometric Progressions. It
is possible to show that geometric progressions have an
exact factorial representation consisting of a binary

FIGURE 3. Receptive field formed by neuron output 1 (a) or
neuron output 2 (b) by unsupervised nonlinear features
extraction after training with random Gaussilan spots as sen-
sory inputs on a retina.
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TABLE 6

Coding Geometric Progression (Exp. 3)

Code | Code F
00000001 010
00000010 111
00000100 011
00001000 001
00010000 000
00100000 101
01000000 110
10000000 100

sequence coding (see Barlow et al., 1989; Hentschel &
Barlow, 1991). We show in this section the results
obtained using a input local representation of an 8-
dimensional input forming a geometric progression P,
= Kx" with x = 0.95 and K being a proper normalization
constant. The output layer has three neurons. Table 5
shows the results after training according to eqn (17).
The code F is the invertible factorial code obtained
after training.
The code F is explicitly given in Table 6.

neuron 1

0.02
0
-0.02 10
0 - 5
10 O
neuron 3

0.02
-0.02
0

10 0

neuron 5

0.02
-0.02
0

10
5
10 0
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3.2.3. Experiment 4: Power-law Coding. As remarked by
Hentschel and Barlow (1991) another important distribu-
tion is the power-law distribution P, = K;L with K
being a proper normalization constant. This kind of dis-
tribution is of interest, since for example the word dis-
tribution in normal English vocabulary follows this
power-law distribution. The output layer has two neurons
and the input code has again a local 4-dimensional code.
All the results for the obtained factorial code are pre-
sented in Tables 7 and 8. The code F-a resulted after
maximization of MIV only. The code F-b was obtained
by simultaneously reducing redundancy. In fact code F-b
is factorial and invertible and code F-a is invertible but
not factorial.

3.3. Receptive Fields Formation from a Retina

As remarked by Rubner and Schulten (1990) the proces-
sing of spatial information has, for a long time, been a
problematic issue. Hubel and Wiesel (1962) described
the first cells as feature detectors (cells in the cat primary
visual cortex, area 17). These neurons perform the first
stage of spatial information processing in the primary

neuron 2

0.02
0
-0.02
0
10 O
neuron 4

0.1
0
-0.1
0

10 O

neuron 6

0.02
0
-0.02
0

5

10 0

FIGURE 4. Receptive fields formed by a layer of six output neurons.
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TABLE 7
Power-law Coding (Exp. 4)
Code Bit entropy MIH MV R (%)
1 2.20 - - 45
F-a 1.35 0.068 1.28 5.47
F-b 1.28 0.0 1.28 0

visual cortex. The question is whether spatial informa-
tion in the visual cortex is processed based on the extrac-
tion of local features, or on a Fourier-like decomposition
into spatial-frequency channels (see Campbell &
Robson, 1968; MacKay, 1981; Pollen et al., 1971).
Rubner and Schulten (1990) describe a mechanism of
formation of spatial feature detectors for the case of neu-
rons with linear response. This is the result of the classi-
cal principal component analysis. The goal of this section
is to study the formation of spatial detectors for the case
of nonlinear features extraction by applying the learning
paradigm introduced in this paper.

We show how the present learning paradigm is able to
form receptive fields in an input-retina. The simple retina
model consists of an array of 10 X 10, that is a total of
100 input neurons and two output neurons. Each input
vector was a Gaussian spot centered at a random position
at least two input units away from the nearest edge in the
input array. Redundancy reduction causes a de-correla-
tion of the synapses during learning. In other words, the

neuron 1

<0

neuron 3
- Q

?//

4 6 8 10

N » O

neuron 5

!

2 4 6 8 10
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TABLE 8
Power-law Coding (Exp. 4)
Code | Code F-b
0001 01
0010 11
0100 00
1000 10

synapses are reinforced in order to extract information of
the input-screen but only if this leads to a non-redundant
representation. In this case, the non-redundancy is
assured by the formation of receptive field in the synapse
space. This mechanism give us an information-theoretic
first principle for the formation of receptive fields in a
retina.

Fig. 3a and b show the resulting values of the synapses
which connect the retina to the first and second output
neuron respectively. The x- and y-axis indicate the coor-
dinates on the input lattice (retina) and the z-axis is the
value of the respective synapse. From these figures it is
easy to see, that the two generated receptive fields divide
the input space in four equal regions, corresponding to
the four output codes: 1 1 (two overlapping hills), 1 0
(output neuron 1 valley overlapping with output neuron 2
hill), 0 1 (output neuron 1 hill overlapping with output
neuron 2 valley) and 0 0 (two overlapping valleys). The
division of the retina in four spatially different sections

neuron 2
N
8 X
6
4
2h .
2 4 6 8 10
neuron 4

N & O ®

neuron 6

- . .
8
d >
4 o

»d
2 — ;

2 4 6 8 10

FIGURE 5. Contours of receptive fields formed by a layer of six output neurons.
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maximizes the extracted information by simultaneously
de-correlating the response activation of the two neurons.
Already with two neurons we find the formation of spa-
tial selective cells.

A quite interesting result is observed when the output
layer contains six neurons. The formed receptive fields
are shown in Figs 4 and 5. As in the linear case analysed
by Rubner and Schulten (1990) our learning paradigm
yields mutually orthogonal, spatially oscillating recep-
tive fields. Receptive fields of simple cells in cat striate
cortex exhibit the same oscillatory patterns (Jones &
Palmer, 1987a; Jones et al., 1987b). The receptive
fields formed display excitatory and inhibitory regions
and reflect simple cells, that respond selectively to
edges or bars of fixed orientation. Therefore, following
the redundancy reduction principle of Barlow given com-
plete information transfer, the weights converge to form
detectors of mutually independent features of the envir-
onment, which represents a nonlinear generalization of
the linear principal component analysis networks
(Rubner & Schulten, 1990).
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APPENDIX

Here we perform the main calculations which lead to the learning rules
discussed in . To calculate the derivatives in egn (15) we depart from the
definition of the objective function in eqn (13) and the definitions of the
different entropies in eqns (11), (14) and (5), and we obtain

aw,, ~2. WP, Pm)(IOg(PmeH 1)

-2 %(Plxzogm ~log(1-P) @
ij

+2.2.P,
v.a

9
g PanXlogPa+ 1)

Using eqns (1) and (2) we obtain

—(Pm>+ P (S“S’ 2 PunSt ) a2)

The derivative of 3(P;)/éw; can be written according to eqn (3) as
——(P»— 2.P.ST 5 (Pw,) (A3)
This gives

o Z P, P‘,‘,7 (log(P Po)+ Z S*(logP, — log(1 — P,))

)

— 2logP, — 1) (A%)

All summands in eqn (0) are of the form 3", ,P., 8(Py,)éw Term. We
point out that if ‘‘Term’’ is independent of the states «, the Hebbian
term in eqn (A2) is canceled by evaluating the sum over the states a.
Thus, adding or substracting constant terms in the parenthesis of eqn
(A4) is arbitrary. We use this to modify the expressions, as follows

3wu ,Z,,, P, a—w—P,,,,, (zogP,,,,7 + g (S¢logP; + (1 — SHlog(1 — P)))

- 210gP,,> (AS)
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Because S € {0,1} we can rewrite the second summand as
2. (stiogp+ (1 - SPlog(t — Py=logl LstPr + 1= sry1 - Py

(A6)

Introducing the symbol {x) for the average value of x for a fixed pattern
v we can write the learning rule now as

B
Aw; =7 3 72.2 Py P,

P P
X log( ;"’)—log - = ”
a [leepi+a-sa-rp

X (785 —(si8;)y) (A7)

691

Mutatis mutandis, we obtain for the input connections the following
learning rule

8
Awq=n5§Pw7P7

P,
x log(%> —log Py
“ [erp+-a-spu-py

X (s8xY — (X)) (A8)



