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Abstract—The minimum variance distortionless response
(MVDR) beamformer, also known as Capon’s beamformer, is
widely studied in the area of speech enhancement. The MVDR
beamformer can be used for both speech dereverberation and
noise reduction. This paper provides new insights into the MVDR
beamformer. Specifically, the local and global behavior of the
MVDR beamformer is analyzed and novel forms of the MVDR
filter are derived and discussed. In earlier works it was observed
that there is a tradeoff between the amount of speech derever-
beration and noise reduction when the MVDR beamformer is
used. Here, the tradeoff between speech dereverberation and noise
reduction is analyzed thoroughly. The local and global behavior,
as well as the tradeoff, is analyzed for different noise fields such
as, for example, a mixture of coherent and non-coherent noise
fields, entirely non-coherent noise fields and diffuse noise fields.
It is shown that maximum noise reduction is achieved when the
MVDR beamformer is used for noise reduction only. The amount
of noise reduction that is sacrificed when complete dereverber-
ation is required depends on the direct-to-reverberation ratio
of the acoustic impulse response between the source and the
reference microphone. The performance evaluation supports the
theoretical analysis and demonstrates the tradeoff between speech
dereverberation and noise reduction. When desiring both speech
dereverberation and noise reduction, the results also demonstrate
that the amount of noise reduction that is sacrificed decreases
when the number of microphones increases.

Index Terms—Beamforming, microphone arrays, minimum
variance distortionless response (MVDR) filter, noise reduction,
Pearson correlation coefficient, speech dereverberation, speech
enhancement.

I. INTRODUCTION

D ISTANT or hands-free audio acquisition is required in
many applications such as audio-bridging and teleconfer-

encing. Microphone arrays are often used for the acquisition and
consist of sets of microphone sensors that are arranged in spe-
cific patterns. The received sensor signals usually consist of a
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desired sound signal, coherent and non-coherent interferences.
The received signals are processed in order to extract the desired
sound, or in other words to suppress the interferences. In the last
four decades, many algorithms have been proposed to process
the received sensor signals [1], [2].

The minimum variance distortionless response (MVDR)
beamformer, also known as Capon beamformer [3], minimizes
the output power of the beamformer under a single linear
constraint on the response of the array towards the desired
signal. The idea of combining multiple inputs in a statistically
optimum manner under the constraint of no signal distortion
can be attributed to Darlington [4]. Several researchers de-
veloped beamformers in which additional linear constraints
were imposed (e.g., Er and Cantoni [5]). These beamformers
are known as linearly constrained minimum variance (LCMV)
beamformers, of which the MVDR beamformer is a special
case. In [6], Frost proposed an adaptive scheme of the MVDR
beamformer, which is based on a constrained least-mean-square
(LMS) type adaptation. Kaneda et al. [7] proposed a noise re-
duction system for speech signals, termed AMNOR, which
adopts a soft-constraint that controls the tradeoff between
speech distortion and noise reduction. To avoid the constrained
adaptation of the MVDR beamformer, Griffiths and Jim [8]
proposed the generalized sidelobe canceller (GSC) struc-
ture, which separates the output power minimization and the
application of the constraint. While Griffiths and Jim only
considered one constraint (i.e., MVDR beamformer), it was
later shown in [9] that the GSC structure can also be used in
the case of multiple constraints (i.e., LCMV beamformer). The
original GSC structure is based on the assumption that the
different sensors receive a delayed version of the desired signal.
The GSC structure was re-derived in the frequency-domain,
and extended to deal with general acoustic transfer functions
(ATFs) by Affes and Grenier [10] and later by Gannot et al.
[11]. The frequency-domain version in [11], which takes into
account the reverberant nature of the enclosure, was termed the
transfer-function generalized sidelobe canceller (TF-GSC).

In theory, the LCMV beamformer can achieve perfect dere-
verberation and noise cancellation when the ATFs between
all sources (including interferences) and the microphones are
known [12]. Using the MVDR beamformer, we can achieve
perfect reverberation cancellation when the ATFs between the
desired source and the microphones are known. In the last
three decades, various methods have been developed to blindly
identify the ATFs, more details can be found in [13] and the
references therein and in [14]. Blind estimation of the ATFs is
however beyond the scope of this paper in which we assume
that the ATFs between the source and the sensors are known.
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In earlier works [12], it was observed that there is a tradeoff
between the amount of speech dereverberation and noise re-
duction. However, this tradeoff was never rigorously analyzed.

Although the MVDR has attracted the attention of many re-
searchers in the acoustics field [1], [2], [10]–[12], [15], [16] and
has proven to be beneficial, a proper insight into its behavior
in respect to its ability to reduce noise and to dereverberate the
speech signal, is still lacking. A rigors analysis of this behavior
is necessary to provide more insight. In addition, the results can
be used to predict its performance in such an environment. In
this paper, we study the MVDR beamformer in room acous-
tics. Specifically, the objectives of this paper are threefold: 1) we
analyze the local and global behavior [1] of the MVDR beam-
former, 2) we derive novel forms of the MVDR filter, and 3) we
analyze the tradeoff between noise and reverberation reduction.
The local and global behavior, as well as the tradeoff, is ana-
lyzed for different noise fields such as, for example, a mixture
of coherent and non-coherent noise fields, entirely non-coherent
noise fields and diffuse noise fields.

The paper is organized as follows. In Section II, the array
model is formulated and the notation used in this paper is in-
troduced. In Section III, we review the MVDR beamformer in
the frequency domain and analyze the noise reduction perfor-
mance. In Section IV, we define different performance measures
that will be used in our analysis. In Section V, we analyze the
performance of the MVDR beamformer. The performance eval-
uation that demonstrate the tradeoff between reverberation and
noise reduction is presented in Section VI. Finally, conclusions
are provided in Section VII.

II. ARRAY MODEL

Consider the conventional signal model in which an -ele-
ment sensor array captures a convolved desired signal (speech
source) in some noise field. The received signals are expressed
as [1], [17]

(1)

where is the impulse response from the unknown (desired)
source to the th microphone, * stands for convolution, and

is the noise at microphone . We assume that the signals
and are uncorrelated and zero mean. All signals

considered in this work are broadband. Without loss of gener-
ality, we consider the first microphone as the reference
microphone. Our main objective in this paper is then to study
the recovering of any one of the signals (noise reduction
only), (total dereverberation and noise reduction), or a fil-
tered version of with the MVDR beamformer. Obviously,
we can recover the reverberant component at one of the other
microphones . When we desire noise reduc-
tion, only the largest amount of noise reduction is attained by
using the reference microphone with the highest signal to noise
ratio.

In the frequency domain, (1) can be rewritten as

(2)

where ,
and are the discrete-time Fourier transforms (DTFTs) of

, and , respectively, at angular fre-
quency and is the imaginary unit .

The microphone signals in the frequency domain are better
summarized in a vector notation as

(3)

where

and superscript denotes transpose of a vector or a matrix.
Using the power spectral density (PSD) of the received signal

and the fact that and are uncorrelated, we get

(4)

where , and are the PSDs
of the th sensor input signal, the th sensor reverberant speech
signal, the desired signal, and the th sensor noise signal, re-
spectively.

The array processing, or beamforming, is then performed by
applying a complex weight to each sensor and summing across
the aperture

(5)

where is the beamformer output

is the beamforming weight vector which is suitable for per-
forming spatial filtering at frequency , and superscript de-
notes transpose conjugation of a vector or a matrix.

The PSD of the beamformer output is given by

(6)

where

(7)
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is the rank-one PSD matrix of the convolved speech signals with
denoting mathematical expectation, and

(8)

is the PSD matrix of the noise field. In the rest of this paper, we
assume that the noise is not fully coherent at the microphones
so that is a full-rank matrix.

Now, we define a parameterized desired signal, which we de-
note by , where refers to a complex scaling
factor that defines the nature of our desired signal. Let
denote the DTFT of the direct path response from the desired
source to the first microphone. By setting ,
we are stating that we desire both noise reduction and complete
dereverberation. By setting , we are stating
that we only desire noise reduction or in other words we desire to
recover the reference sensor signal . In
the following, we use the factor in the definitions of per-
formance measures and in the derivation of the MVDR beam-
former.

III. MINIMUM VARIANCE DISTORTIONLESS

RESPONSE BEAMFORMER

We now derive the celebrated MVDR beamformer proposed
by Capon [3] in the context of room acoustics.

Let us define the error signal between the output beamformer
and the parameterized desired signal at frequency

(9)

The mean-squared error (MSE) is given by

(10)

This form of the MSE is helpful to derive the MVDR filter which
is conceived by providing a fixed gain [in our case modeled by

] to the signal while utilizing the remaining degrees of
freedom to minimize the contribution of the noise and interfer-
ence [second term of the right-hand side of (10)] to the array
output1

subject to (11)

The solution to this constrained optimization problem is given
by

(12)

1The same MVDR filter can be found by minimizing� ����� ���������
subject to � ��������� � ����� [18].

where superscript denotes complex conjugation. In practice,
the PSD matrix can be estimated during noise-only pe-
riods.

We can get rid of the explicit dependence on the above filter
on the acoustic transfer functions by
multiplying and dividing (12) by and using the fact that

to ob-
tain the following form

(13)

where denotes the trace of a matrix, and

is a vector of length . Interestingly, we only need to
achieve dereverberation and noise reduction.

Using the Woodbury’s identity, another important form of the
MVDR filter is derived

(14)

where

(15)

and

(16)

is the PSD matrix of the microphone signals.
For the particular case, , where we only

want to reduce the level of the noise (no dereverberation at all),
we can get rid of the explicit dependence of the MVDR filter on
all acoustic transfer functions to obtain the following forms [1]:

(17)

where is the identity matrix. Hence, noise reduction can
be achieved without explicitly estimating the acoustic transfer
functions.

IV. PERFORMANCE MEASURES

In this section, we present some very useful measures that will
help us better understand how noise reduction and speech dere-
verberation work with the MVDR beamformer in a real room
acoustic environment.

To be consistent with prior works we define the local input
signal-to-noise ratio (SNR) with respect to the parameterized
desired signal [given by ] and the noise signal re-
ceived by the first microphone, i.e.,

iSNR (18)
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where is the PSD of the noise signal . The global
input SNR is given by

iSNR (19)

After the MVDR beamforming operation with the frequency-
domain model given in (6), the local output SNR is

(20)

By substituting (12) in (20) it can be easily shown that

(21)

It is extremely important to observe that the desired scaling pro-
vided by has no impact on the resulting local output SNR
(but has an impact on the local input SNR). The global output
SNR with the MVDR filter is

(22)

Contrary to the local output SNR, the global output SNR de-
pends strongly on the complex scaling factor .

Another important measure is the level of noise reduction
achieved through beamforming. Therefore, we define the local
noise-reduction factor as the ratio of the PSD of the original
noise at the reference microphone over the PSD of the residual
noise

(23)

iSNR
(24)

We see that is the product of two terms. The first one
is the ratio of the output SNR over the input SNR at frequency
while the second term represents the local distortion introduced
by the beamformer . For the MVDR beamformer we have

. Therefore, we can further
simplify (24)

iSNR
(25)

In this case, the local noise-reduction factor tells us exactly how
much the output SNR is improved (or not) compared to the input
SNR.

Integrating across the entire frequency range in the numerator
and denominator of (23) yields the global noise-reduction factor

iSNR

(26)

The global noise-reduction factor is also the product of two
terms. While the first one is the ratio of the global output SNR
over the global input SNR, the second term is the global speech
distortion due the beamformer. For the MVDR beamformer the
global noise-reduction factor further simplifies to

iSNR
(27)

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the MVDR
beamformer and the tradeoff between the amount of speech
dereverberation and noise reduction. When comparing the
noise-reduction factor of different MVDR beamformers (with
different objectives) it is of great importance that the com-
parison is conducted in a fair way. In Section V-A we will
discuss this issue and propose a viable comparison method. In
Sections V-B and V-C, we analyze the local and global behavior
of the output SNR and the noise-reduction factor obtained by
the MVDR beamformer, respectively. In addition, we analyze
the tradeoff between dereverberation and noise reduction. In
Sections V-D, V-E and V-F, we analyze the MVDR perfor-
mance in three different noise fields, viz., 1) non-coherent noise
fields, 2) mixed coherent and non-coherent noise fields, and 3)
diffuse noise fields.

Before we proceed we define the local squared Pearson corre-
lation coefficient (SPCC) or magnitude squared coherence func-
tion (MSCF), which is the frequency-domain counterpart of the
SPCC. In [19], the SPCC was used to analyze the noise reduc-
tion performance of the single-channel Wiener filter. Let
and be the DTFTs of the two zero-mean real-valued
random sequences and . Then the local SPCC between
and at frequency is defined as

(28)
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Fig. 1. Magnitude of the transfer functions ����� � �� ����� � �����
(reverberation time � � ��� s, source-receiver distance � � ��� m).

It is clear that the local SPCC always takes its values between 0
and 1.

A. On the Comparison of Different MVDR Beamformers

One of the main objectives of this work is to compare
MVDR beamformers with different constraints. When we
desire noise-reduction only, the constraint of the MVDR beam-
former is given by . When we desire
complete dereverberation and noise reduction we can use the
constraint , where denotes
the transfer function of the direct path response from the
source to the first microphone. In Fig. 1, the magnitude of the
transfer functions and are shown. The transfer
function was generated using the image-method [20],
the distance between the source and the microphone was 2.5 m
and the reverberation time was 500 ms. The transfer function

was obtained by considering only the direct path. As
expected from a physical point of view, we can see that the
energy of is larger than the energy of . In
addition we observe that for some frequencies is
smaller than . Evidently, the power of the desired
signal is always smaller than the power of the
desired signal .

Now let us first look at an illustrative example. Obviously, by
choosing any constraint

we desire both noise reduction and complete dere-
verberation. Now the MVDR filters are equal to

, i.e., by scaling the desired signal we scale the
MVDR filter. Consequently, we have also scaled the noise signal
at the output. When we would directly calculate the noise-reduc-
tion factor of the beamformers using (25) we obtain different
results since

for (29)

This can also be explained by the fact that the local output
SNRs of all MVDR beamformers are equal be-
cause the local output SNR [as defined in (20)] is independent

of while the local input SNR [as defined in (18)] is depen-
dent on . A similar problem occurs when we like to com-
pare the noise-reduction factor of MVDR beamformers with
completely different constraints because the power of the rever-
berant signal is much larger than the power of the direct sound
signal. This abnormality can be corrected by normalizing the
power of the output signal. Fundamentally, the definition of the
MVDR beamformer depends on . Therefore, the choice
of different desired signals [given by ] reflects the
definition of the iSNR. Basically we can apply any normaliza-
tion provided that the power of the desired signals at the output
is equal. However, to obtain a meaningful noise-reduction factor
and to be consistent with earlier works we propose to make the
power of the desired signal at the output of the beamformer
equal to the power of the signal that would be obtained when
using the constraint . The global nor-
malization factor is therefore given by

(30)

B. Local Analyses

Let us first investigate the local behavior of the input and
output SNRs via the SPCCs. Indeed, the local SPCC between
the parameterized desired signal and the reference
microphone signal is

(31)

Expression (31) tells us how much the signals and
are coherent at frequency , i.e., how noisy the reference

microphone signal is. In addition, we note that the local SPCC
(31) does not depend on the complex scaling factor .

At the same time, the local SPCC between the parameter-
ized desired signal, , and the beamformer output

is maximized by and does not
depend on [the same way the local output SNR does not
depend on ]

(32)

Indeed, (32) is equal to one when approaches zero and
is equal to zero when equals zero.

The most important goal of a beamforming algorithm is to
improve the local SNR after filtering. Therefore, we must design
the beamforming weight vectors, , in such
a way that iSNR . We next give an
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interesting property that will give more insights into the local
SNR behavior of the MVDR beamformer.

Property 5.1: With the MVDR filter given in (12), the local
output SNR times is always greater than or equal to
the local input SNR times , i.e.,

iSNR (33)

which can also be expressed using (18) as

(34)

Proof: See Appendix A.
The normalized local noise-reduction factor is defined as

iSNR

(35)

where . Indeed, for
different MVDR beamformers the noise-reduction factor
varies due to , since the local output
SNR and do not depend on . Since

the
normalized local noise-reduction factor is independent of the
global scaling factor .

To gain more insight into the local behavior of
we analyzed several acoustic transfer

functions. To simplify the following discussion we assume
that the power spectral density for all . Let us
decompose the transfer function into two parts. The
first part is the DTFT the direct path, while the second
part is the DTFT of the reverberant part. Now let us
define the desired response as

(36)

where the parameter controls the direct-to-re-
verberation ratio (DRR) of the desired response. In Fig. 2(a),
we plotted for . Due to
the normalization the energy of (and
therefore its mean value) does not depend on . Locally,
we can see that the deviation with respect to in-
creases when increases (i.e., when the DRR decreases). In
Fig. 2(b), we plotted the histogram of
for . First, we observe that the probability that

is smaller than its mean value decreases
when decreases (i.e., when the DRR increases). Second, we
observe that the distribution is stretched out towards negative
values on the decibel’s logarithmic scale when increases.

Fig. 2. (a) Normalized transfer functions ������� ��� � ����� with
������� � � ���� � �� ���� for � � ��� ���� 	�. (b) Histograms of
	� 
�� ����������� � ������.

Hence, when the desired speech signal contains less reverbera-
tion it is more likely that will increase and
that the local noise-reduction factor will decrease. Therefore, it
is likely that the highest local noise reduction is achieved when
we desire only noise reduction, i.e., for .

Using Property 5.1, we deduce a lower bound for the normal-
ized local noise-reduction factor

(37)

For we obtain

(38)

Expression (38) proves that there is always noise-reduction
when we desire only noise reduction. However, in other situa-
tions we cannot guarantee that there is noise reduction.
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C. Global Analyses

Using (27), (22), and (19), we deduce the normalized global
noise-reduction factor

iSNR

(39)

This normalized global noise-reduction factor behaves, with re-
spect to , similarly to its local counterpart. It can easily
be verified that the normalized global noise-reduction factor for

is independent of . Due to the complexity of (39) it
is difficult to predict the exact behavior of the normalized global
noise-reduction factor. From the analyses in the previous sub-
section we do know that the distribution of is
stretched out towards zero when the DRR decreases. Hence, for
each frequency it is likely that will decrease
when the DRR decreases. Consequently, we expect that the nor-
malized global noise-reduction factor will always increase when
the DRR decreases. The expected behavior of the normalized
global noise-reduction factor is consistent with the results pre-
sented in Section VI.

D. Non-Coherent Noise Field

Let us assume that the noise field is homogeneous and spa-
tially white. In case the noise variance at each microphone is
equal to the noise covariance matrix simplifies
to . In the latter case, the MVDR beamformer simpli-
fies to

(40)

where . For this
is the well-known matched beamformer [21], which generalizes
the delay-and-sum beamformer. The local output SNR and nor-
malized local noise-reduction factor can be deduced by substi-
tuting in (21) and (35), and results in

(41)

and

(42)

respectively. When the normalization factor
equals 1, the normalized noise-reduction factor then

becomes

(43)

As we expected from (38), the normalized noise-reduction
factor is always larger than 1 when . How-
ever, in other situations we cannot guarantee that there is noise
reduction.

The normalized global noise-reduction factor is given by

(44)

In an anechoic environment where the source is positioned
in the far-field of the array, are steering vectors and

. In this case the normalized
global noise-reduction factor simplifies to

(45)

The latter results in consistent with earlier works and shows that
the noise-reduction factor only depends on the number of micro-
phones. When the PSD matrices of the noise and microphone
signals are known we can compute the MVDR filter using (17),
i.e., we do not require any a prior knowledge of the direction of
arrival.

E. Coherent Plus Non-Coherent Noise Field

Let denote the
ATFs between a noise source and the array. The noise covari-
ance matrix can be written as

(46)

Using Woodbury’s identity we have

(47)
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Now, the MVDR beamformer becomes

(48)
The local output SNR and normalized local noise-reduction

factor are given by

(49)

and

(50)

The noise reduction depends on the ratio between the variance
of the non-coherent and coherent, and on the inner product of

and [22].
Obviously, the noise covariance matrix needs to be

full-rank. However, from a theoretical point of view we can
analyze the coherent noise at the output of the MVDR beam-
former [given by ] when the ratio

approaches zero, i.e., the noise field be-
comes more and more coherent. Provided that
the coherent noise at the output of the beamformer is given by

For there is a contradiction, since the desired
signal and the noise come from the same point.

F. Diffuse Noise Field

In highly reverberant acoustical environment, such as a car
enclosure, the noise field tends to be diffused (see for instance
[23], [24]). A diffused noise field consists of infinite indepen-
dent noise sources that are equi-distributed on a sphere around
the array. The local PCC between signals received by two sen-
sors with distance can be found in [23], and is given
in the following expression:

(51)

where denotes the sound velocity. As can be seen from (51),
the coherence between the sensors decreases rapidly when the
frequency increases. The coherence matrix is given by

...
...

. . .
...

(52)

If denotes the variance of the diffuse noise, then the
noise covariance matrix is given by

(53)

The local output SNR is given by2

(54)

The normalized local noise-reduction factor is given by

(55)

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the MVDR
beamformer in room acoustics. We will demonstrate the
tradeoff between speech dereverberation and noise reduction
by computing the normalized noise-reduction factor in various

2For � � � the diffuse noise field is entirely coherent, i.e., the rank of
� ���� equals one. Consequently, the MVDR filter does not exist. However,
in practice there is always an additional non-coherent noise term which makes
the covariance matrix full-rank.
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Fig. 3. Normalized global noise-reduction factor obtained using � �
��� �� �� (� � ���� � � � m, non-coherent noise iSNR � � dB).

scenarios. A linear microphone array was used with two to eight
microphones and an inter-microphone distance of 5 cm. The
room size is 5 4 6 m (length width height), the rever-
beration time of the enclosure varies between 0.2 to 0.4 s. All
room impulse responses are generated using the image-method
proposed by Allen and Berkley [20] with some necessary
modifications that ensure proper inter-microphone phase delays
as proposed by Peterson [25]. The distance between the desired
source and the first microphone varies from 1 to 3 m. The
desired source consists of speech like noise (USASI). The noise
consists of a simple AR(1) process (autoregressive process of
order one) that was created by filtering a stationary zero-mean
Gaussian sequences with a linear time-invariant filter. We used
non-coherent noise, a mixture of non-coherent noise and a
coherent noise source, and diffuse noise.

In order to study the tradeoff more carefully, we need
to control the amount of reverberation reduction. Here we
propose to control the amount of reverberation reduction
by changing the DRR of the desired response . As
proposed in Section V-A, we control the DRR using the pa-
rameter . The complex scaling factor
is calculated using (36). When the desired response equals

, we desire both noise reduction and
complete dereverberation. However, when the desired response
equals we desire only noise reduction.

A. Influence of the Number of Microphones

In this section, we study the influence of the number of mi-
crophones used. The reverberation time was set to s
and the distance between the source and the first microphone
was m. The noise field is non-coherent and the global
input SNR [for ] was iSNR dB. In
this experiment two, four, or eight microphones were used. In
Fig. 3 the normalized global noise-reduction factor is shown for

. First, we observe that there is a tradeoff between
speech dereverberation and noise reduction. The largest amount
of noise reduction is achieved for , i.e., when no dere-
verberation is performed. While a smaller amount of noise re-
duction is achieved for , i.e., when complete dereverber-
ation is performed. In the case of two microphones ,

Fig. 4. (a) DRR of ����� 		 for � � ������������� s. (b) The normalized
global noise-reduction factor obtained using � � ������������� s (� � ��
� � � m, non-coherent noise iSNR � � dB).

we amplify the noise when we desire to complete dereverberate
the speech signal. Second, we observe that the amount of noise
reduction increases with approximately 3 dB if we double the
number of microphones. Finally, we observe that the tradeoff
becomes less evident when more microphones are used. When
more microphones are available the degrees of freedom of the
MVDR beamformer increases. In such a case the MVDR beam-
former is apparently able to perform speech dereverberation
without significantly sacrificing the amount of noise reduction.

B. Influence of the Reverberation Time

In this section, we study the influence of the reverberation
time. The distance between the source and the first microphone
was set to m. The noise field is non-coherent and the
global input SNR [for ] was iSNR dB.
In this experiment, four microphones were used, and the re-
verberation time was set to s. The DRR
ratio of the desired response is shown in Fig. 4(a). In
Fig. 4(b), the normalized global noise-reduction factor is shown
for . Again, we observe that there is a tradeoff be-
tween speech dereverberation and noise reduction. This exper-
iment also shows that almost no noise reduction is sacrificed
when we desire to increase the DRR to approximately dB
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Fig. 5. Normalized global noise-reduction factor obtained using non-coherent
noise iSNR � ���� � � � � ��� dB (� � ��� s, � � �� � � � m).

for s. In other words, as long as the reverberant part
of the signal is dominant (DRR dB) we can reduce rever-
beration and noise without sacrificing too much noise reduction.
However, when the DRR is increased further (DRR dB)
the noise-reduction decreases.

C. Influence of the Noise Field

In this section we evaluate the normalized noise-reduction
factor in various noise fields and study the tradeoff between
noise reduction and dereverberation.

1) Non-Coherent Noise Field: In this section, we study the
amount of noise reduction in a non-coherent noise field with
different input SNRs. The distance between the source and the
first microphone was set to m. In this experiment four
microphones were used, and the reverberation time was set to

s. In Fig. 5(a), the normalized global noise-reduc-
tion factor is shown for and different input SNRs
ranging from 5 dB to 30 dB. In Fig. 5(b), the normalized
global noise-reduction factor is shown for and input
SNRs of 5, 0, and 30 dB. We observe the tradeoff between
speech dereverberation and noise reduction as before. As ex-
pected from (44), for a non-coherent noise field the normalized
global noise-reduction factor is independent of the input SNR.
In Fig. 6, we depicted the normalized global noise-reduction

Fig. 6. Normalized global noise-reduction factor for one specific source tra-
jectory obtained using � � ����� ������ � � � � �� m (� � ��� s, � � �,
non-coherent noise iSNR � � dB).

Fig. 7. Normalized global noise-reduction factor obtained using a coherent
plus non-coherent noise iSNR � ���� � � � � ��� dB (iSNR � �� dB,� �

��� s, � � �� � � � m).

factor for (i.e., complete dereverberation and noise re-
duction) and (i.e., noise reduction only) for different dis-
tances. It should be noted that the DRR is not monotonically de-
creasing with the distance. Therefore, the noise-reduction factor
is not monotonically decreasing with the distance. Here four mi-
crophones were used and the reverberation time equals 0.3 s.
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Fig. 8. Normalized noise-reduction factor obtained using a diffuse plus non-
coherent noise field. (a) Global noise-reduction factor for � � � � �, and
(b) local noise-reduction factor for � � ��� �� (iSNR � � dB, iSNR �

�� dB, � � ��� s, � � �� � � � m).

When we desire only noise reduction, the noise reduction is in-
dependent of the distance between the source and the first mi-
crophone. However, when we desire both dereverberation and
noise reduction we see that the normalized global noise-reduc-
tion factor decreases rapidly. At a distance of 4 m we sacrificed
approximately 4-dB noise reduction.

2) Coherent and Non-Coherent Noise Field: In this section,
we study the amount of noise reduction in a coherent plus non-
coherent noise field with different input SNRs. The input SNR
iSNR of the non-coherent noise is 20 dB. The distance be-

tween the source and the first microphone was set to m.
In this experiment, four microphones were used, and the rever-
beration time was set to s. In Fig. 7(a), the normal-
ized global noise-reduction factor is shown for
and for input SNR iSNR of the coherent noise source that
ranges from 5 dB to 30 dB. In Fig. 7(b), the normalized global
noise-reduction factor is shown for and input SNRs
of 5, 0, and 30 dB. We observe the tradeoff between speech
dereverberation and noise reduction as before. In addition, we
see that the noise reduction in a coherent noise field is much
larger than the noise reduction in a non-coherent noise field.

3) Diffuse Noise Field: In this section, we study the amount
of noise reduction in a diffuse noise field. To ensure that the
noise covariance matrix is full-rank we added a non-coherent
noise field with an input SNR iSNR of 30 dB. The input
SNR of the diffuse noise field iSNR was 0 dB. The diffuse
noise signals were generated using the method described in [24].
The distance between the source and the first microphone was
set to m. In this experiment, four microphones were
used, and the reverberation time was set to s. In
Fig. 8, the normalized global noise-reduction factor is shown
for . In Fig. 8(b) the normalized local noise-reduc-
tion factor is shown for . We observe the tradeoff be-
tween speech dereverberation and noise reduction as before. For
this specific setup, the normalized local noise-reduction factor
at low frequencies is lower than the normalized local noise-re-
duction factor at high frequencies. Locally, we see that for most
frequencies we achieve higher noise-reduction when we desire
only noise-reduction. However, for some frequencies the local
noise-reduction factor is slightly higher when we desire com-
plete dereverberation and noise reduction. This clearly demon-
strates that we cannot guarantee the tradeoff between speech
dereverberation and noise reduction locally.

VII. CONCLUSION

In this paper, we studied the MVDR beamformer in room
acoustics. The tradeoff between speech dereverberation and
noise reduction was analyzed. The results of the theoretical
performance analysis are supported by the performance evalu-
ation. The results indicate that there is a tradeoff between the
achievable noise reduction and speech dereverberation. The
amount of noise reduction that is sacrificed when complete
dereverberation is required depends on the direct-to-reverbera-
tion ratio of the acoustic impulse response between the source
and the reference microphone, and the desired response. The
performance evaluation supports the theoretical analysis and
demonstrates the tradeoff between speech dereverberation and
noise reduction. When desiring both speech dereverberation
and noise reduction the results also demonstrate that the amount
of noise reduction that is sacrificed decreases when the number
of microphones increases.

APPENDIX A
PROOF OF PROPERTY 5.1

Proof: Let us first evaluate the local SPCC
[using (2) and (18)] and

[using (3)
and (20)]

iSNR

iSNR
(56)

(57)
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In addition, we evaluate the local SPCC or MSCF between
and

(58)

From (58) and the fact that we have

(59)

In addition, it can be shown that

(60)

From (59) and (60) we know that

(61)

Hence, by substituting (56) and (57) in (61) we obtain

iSNR

iSNR

(62)

As a result

iSNR (63)

which is equal to (33).
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