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Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials
(SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conven-
tionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of

) the SNR. Here we exploit the fundamental assumption of evoked responses - reproducibility across trials - to de-
Igg‘glf rs: velop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel
EEG spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-
Reliability dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample
Coherence data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies
Spatial filtering match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data
(i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the pro-
posed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We
provide a freely-available MATLAB implementation of the proposed technique, herein termed “Reliable Compo-

nents Analysis”.

© 2015 Elsevier Inc. All rights reserved.

Introduction

When presented with a temporally periodic stimulus, the visual sys-
tem responds with a periodic response at the stimulus frequency (and its
harmonics). The resulting steady state visual evoked potential (SSVEP)
(Kamp et al., 1960; Regan, 1966; Van der Tweel and Verduyn Lunel,
1965; van der Tweel and Spekreijse, 1969) is readily measurable via elec-
troencephalography (EEG) and has been used extensively to probe the
spatiotemporal dimensions of visual sensory processing in the human
brain (see Regan, 1989; Vialatte et al., 2010). In addition to their employ-
ment in cognitive (Andersen et al., 2012) and developmental/clinical
neuroscience (Almogpbel et al., 2008), SSVEPs have also been commonly
applied to the development of brain-computer-interfaces (BCls
Middendorf et al., 2000; Ming and Shangkai, 1999; Zhu et al., 2010).

The volume conduction inherent to EEG spatially smoothes the elec-
tric currents generated by cortical sources, thus lowering the spatial res-
olution of the resulting scalp measurements. Viewed in another manner,
however, the spatial diversity brought about by volume conduction
means that the underlying neural signal may be picked up across multi-
ple locations, each with generally different noise statistics. Consequently,
modern-day SSVEP paradigms employ multichannel recording arrays
and afford the experimenter with high-dimensional data sets spanning
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the electrode montage. The conventional procedure is to a priori select
one or a few target electrodes and then to analyze the evoked data in
the space of the chosen subset. In contrast, spatial filtering approaches
(Garcia-Molina and Zhu, 2011) exploit the spatial redundancy inherent
to EEG and form linear combinations of the data, yielding signal “compo-
nents”. A variety of approaches to computing the spatial filter weights
have been proposed: maximizing statistical independence (Wang et al.,
2006), maximizing the variance explained (Pouryazdian and Erfanian,
2009), minimizing the noise power (Friman et al., 2007), and maximiz-
ing a variant of the signal-to-noise ratio (SNR) (Blankertz et al., 2008;
Friman et al., 2007). The spatial filtering approach to SSVEPs yields a par-
simonious, low-rank representation of the experimental data with the
SNR of the components generally exhibiting an increase over that of in-
dividual electrodes. Moreover, the topography of weights comprising
the linear combination can potentially inform one of the (at least approx-
imate) locations of the underlying neuronal generators.

However, this latter potential has not been fully realized by existing
spatial filtering approaches (de Cheveigné and Parra, 2014; Garcia-
Molina and Zhu, 2011). The predominant criterion being optimized in
current spatial filtering paradigms is the SNR, which varies inversely
with noise power. The SNR maximizing approaches thus often operate
by steering the array orthogonal to the noise subspace, without control-
ling for the ensuing signal distortion. Consequently, the topographies of
the resulting components do not always bear resemblance to the scalp
projections of actual cortical sources, and are thus difficult to interpret
(see Fig. 8 in Blankertz et al., 2008, for example).
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The primary application of spatial filtering SSVEP techniques has
been the BCI (Bin et al., 2009; Garcia-Molina and Zhu, 2011; Lin et al.,
2006; Nam et al., 2013; Pan et al., 2011; Wang, 2008; Zhang et al.,
2013), where SNR optimization, rather than faithful signal representa-
tion, is the primary goal. By contrast, the cognitive neuroscience and
clinical assessment communities commonly employ SSVEPs to eluci-
date neural information processing, typically examining the SSVEP at a
single electrode or by its (raw unfiltered) topography across the elec-
trode array (see, for example, Herrmann, 2001; Kemp et al., 2002;
Morgan et al., 1996; Miiller et al., 2006; Silberstein et al., 1995;
Srinivasan and Petrovic, 2006).

Recently, a novel spatial filtering technique which maximizes the
inter-subject correlations among a set of continuous EEG records has
been proposed (Dmochowski et al., 2012). This method projects the
data of multiple subjects onto a common space such that the resulting
projections capture the neural responses common to all viewers. Here,
we adopt a similar approach in the SSVEP context by focusing on the
across-trial correlations. The technique exploits the fundamental as-
sumption of evoked responses — reproducibility across trials - to identi-
fy spatial components of the SSVEP which exhibit maximal trial-to-trial
covariance. In other words, we project the data into a space in which the
reliability (i.e., correlation across trials) of the real and imaginary SSVEP
Fourier coefficients is maximal. The proposed technique operates on
single-trial SSVEP spectra and explicitly represents the trial dimension.
This is in contrast to existing component analysis techniques which
“stack” or concatenate the trial dimension in order to achieve a two-
dimensional data matrix (space-by-time or space-by-frequency) from
which covariance matrices are typically formed (notable exceptions in-
clude Zhang et al. (2011, 2013) which employ a tensor formulation of
the data in conjunction with multiway CCA to perform trial selection).
Note that such stacking throws away the structure of evoked response
data. Here, we instead use the third (trial) dimension to focus the spatial
filters onto features which are evoked in each trial.

We apply the technique to one simulated and one real SSVEP data
set, and from each extract components that exhibit behavior consistent
with physiology (for example, the method recovers dipolar topogra-
phies which contralateralize with the stimulated visual hemifield).
Moreover, the SNR of the captured components is significantly higher
than that of the “best” (i.e., highest SNR) individual electrode. We con-
trast the method to both Principal Components Analysis (PCA) and
the Common Spatial Patterns (CSP) technique (Blankertz et al., 2008)
which optimizes an SNR-related criterion, and find that the proposed
technique yields favorable tradeoffs between plausibility of compo-
nents and achieved SNR. Additionally, the proposed method provides
a drastic dimensionality reduction as the number of components re-
quired to capture the bulk of the trial-to-trial reliability is shown to be
more than an order of magnitude lower than the number of acquired
channels. In summary, the proposed technique yields a compact repre-
sentation of SSVEP data sets with high-SNR, physiologically plausible
components by optimizing the characteristic feature of evoked re-
sponses - reliability across trials. A MATLAB toolbox which contains
source code to implement the technique, herein referred to as “Reliable
Components Analysis” (RCA) is available at github.com/dmochow/rca.

Methods
Reliable components analysis

The following details the extension of the method of Dmochowski
et al. (2012) to the SSVEP context; namely, we propose a component
analysis technique which explicitly maximizes the trial-to-trial spectral
covariance of the SSVEP. The approach is inspired by canonical correla-
tion analysis (Hotelling, 1936) and its generalizations to multiple sub-
jects (Kettenring, 1971), differing in that it uses the same projection
for all data sets. It is conceptually similar to the “common canonical var-
iates” method (Neuenschwander and Flury, 1995), which is based on a

maximum likelihood formulation, as opposed to the conventional ei-
genvalue problem developed in Dmochowski et al. (2012) and herein.

Consider an experimental paradigm in which a stimulus is presented
N times, such that we have a set of N data matrices {Xj, ..., Xy} where X,
represents the neural response during trial n. Specifically, the (mean-
centered) rows of X, denote channels, with the columns carrying real
and imaginary Fourier coefficients across the frequency range of interest
(i.e., a three-response-frequency paradigm will have 6 columns in X,).

In the following, let P; = {(p;,q;)} = {(1,2),(1,3),...,(N=1,N)} de-
note the set of all P= N x (N — 1)/2 unique trial pairs. We then form the
following trial-aggregated data matrices:

X1 = [Xpl sz

X, =[X X - X

XPI’ } (‘1)
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We apply a linear spatial filter to the aggregated spectral data
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where T denotes matrix transposition. The correlation coefficient be-

tween the resulting spatially filtered data records is given by:
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Substituting Eq. (2) into Eq. (3) yields:
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where F is the number of analyzed frequencies, R;; and Ry, denote
within-trial spatial covariance matrices, and Ry is the across-trial spatial
covariance matrix which captures trial-to-trial reliability. Note from
Eq. (4) that p is the ratio of across- to within-trial covariance. We seek
to find the spatial filter w which maximizes this ratio:

arg max p. (6)

It is shown in Dmochowski et al. (2012) that assuming wW'R;;w =
wR,,w, the solution to Eq. (6) is an eigenvalue problem:

ARyy +Ryy)w =Ry,w, (7)

where A is the eigenvalue corresponding to the maximal trial-
aggregated correlation coefficient (i.e., the optimal value of p) achieved
by projecting the data onto the spatial filter w. There are multiple such
solutions, ranked in decreasing order of trial-to-trial reliability:
A1 > A2 > ... > \p, where D = min[rank(R;;), rank(R;; + Ry;)]. The as-
sociated eigenvectors, Wy, Wo, ..., Wp are not generally orthogonal. This
is in contrast to PCA which yields spatially orthogonal filter weights.
However, the component spectra recovered by the various w's are mu-
tually uncorrelated (Golub and Van Loan, 2012).

It is also worthwhile to point out that the assumption w'Ry;w =
w'R,,w does not limit generality, as one can simply define P; =
{(pivqi)¢ (ql‘pl)} = {(1*2)7 (N_lN)* (NN—1)7 Tt (27 1)} and then
substitute P/ in Eq. (1) to ensure that R;; = Ry5; this was performed
throughout our analyses. Moreover, when computing the eigen-
values of Eq. (7), we regularize the within-trial pooled covariance
by keeping only the first K dimensions, where K corresponds to
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the “knee” of the eigenvalue spectrum, in the spectral representa-
tion of Ry; + Ry;. For the data sets considered here, K = 2F. Finally,
it will be subsequently shown that the bulk of the across-trial reli-
ability is captured in the first C dimensions, where C < D. This
fact is responsible for the dimensionality reduction of RCA, which
we quantify in the forthcoming results by defining the following
measure:

C
i1 )\i

e =S5t
i1

8)
where 1)(C) is termed as the proportion of reliability explained by the
first C RCs.

Comparison techniques

Throughout the results, we compare the behavior of the proposed
technique (shown diagrammatically in Fig. 1) with two of the more
commonly employed component analysis techniques: CSP (Blankertz
et al., 2008) and PCA. To allow for a fair comparison among these
three techniques, care was taken to ensure that all three methods
were driven by the same spatial covariances. To that end, CSP seeks to
project the sensor data onto a space in which the difference between
two conditions is maximized (Blankertz et al., 2008). In the SSVEP con-
text, these two conditions are simply “stimulation-on” and “stimula-
tion-off”. As a result, CSP effectively maximizes the following criterion
(Garcia-Molina and Zhu, 2011):

T
mvgx % , (9)
w (R, +R,)w

where R, is the spatial covariance matrix of the observed data during
stimulation and R, is the noise-only spatial covariance (i.e., no stimula-
tion). By contrast, PCA identifies linear combinations of electrodes
which maximize the proportion of variance explained in the observed
data:

T
w R,w
max =z = (10)

Covariance computation and SNR definition

Covariance matrices were computed over trial-aggregated data re-
cords according to Eq. (1), with Ry = Ry; = Ry5; that is, the within-
trial spatial covariance used in the denominator of the RCA objective
function is precisely the observed spatial covariance operated on by
CSP and PCA. For the simulated data set (details forthcoming), we esti-
mated the noise covariance R, by assuming that a noise-only period was
available (i.e., we formed the noise covariance by simply omitting the
propagation of the desired signal to the array in the computation of
R,). Analogously, a signal-only covariance Rs was also computed by
omitting the contribution of the noise. The output SNR then followed as:

w'Rw

SNRg; =——.
simulated WTRnW

(11)

For the real data set, we estimated the noise covariance from the
temporal frequency bands directly adjacent (one below and one
above) the signal frequencies considered (i.e., the even harmonics of
the stimulation frequency). The SNR was then computed according to:

T
SNRreal = W— ’ (12)
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Fig. 1. A diagrammatic view of reliable components analysis (RCA). An electrode-by-
frequency data matrix X,, which captures the real and imaginary components of the
SSVEP across the array is constructed for every trial n. An optimally tuned spatial filter
w then projects all N such data matrices onto a common space in which the trial-to-
trial covariance of the resulting spectra y, is maximized. In our implementation, the
raw data matrices X, contain the real and imaginary parts of Fourier coefficients at
frequencies corresponding to the stimulus frequency and its harmonics. The
projected spectra consist of linear combinations of the spectra at individual elec-
trodes, with the weights of the linear combination chosen to maximize trial-to-trial
reliability.

where it should be noted that R, replaces R, in the numerator as one
does not have access to the true signal-only covariance with real data.

Note that Eqs. (11) and (12) constitute an aggregated single-trial
SNR criterion. It would also have been possible to instead form trial-
averaged covariance matrices and hence optimize trial-averaged SNR.
In the SSVEP context, however, when the number of frequencies is typ-
ically much smaller than the number of channels, trial-averaged covari-
ance matrices are rank-deficient. For this reason, and to maintain
consistency with RCA's inherent use of trial-aggregated data, we consid-
ered the single-trial version of SNR in this study.

Component scalp projections

When comparing component topographies, we contrast not the spa-
tial filter weights yielded by the appropriate optimization problem, but
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rather the resulting scalp projection of the activity recovered by that
spatial filter. This inverse topography is generally more informative
than the weights in that it encompasses both the filter weights as well
as the data that is being multiplied by them (Haufe et al., 2014). Specif-
ically, let us construct a weight matrix W whose columns represent the
spatial filter weight vectors w yielded by a component analysis tech-
nique. The projections of the resulting components onto the scalp data
are given by (Haufe et al.,, 2014; Parra et al.,, 2005):

A= RXW(WTRXW)”7 (13)

where R, = Ry; = Ry; is the (within-trial) spatial covariance matrix of
the observed data. The columns of A represent the pattern of electric po-
tentials that would be observed on the scalp if only the source signal re-
covered by w was active, and inform us of the approximate location of
the underlying neuronal sources (up to the inherent limits imposed by
volume conduction in EEG).

Synthetic data set

Prior to delving into real data, we evaluated the proposed technique
in a simulated environment. Simulations possess several desirable prop-
erties stemming from the fact that one has access to ground-truth sig-
nals, which is particularly beneficial for the computation of the
achieved SNR. A simulation also allows one to easily sweep through pa-
rameter spaces; here, we perform a Monte Carlo simulation which eval-
uates the effect of the number of trials on the recovered components.
500 draws were simulated for each of the following number of trials
per draw: {10, 20, 30, 50, 100}. Our aim was to assess the behavior of
the proposed and conventional component analysis techniques as a
function of the amount of available data from which to learn the re-
quired spatial filters.

With the availability of detailed, anatomically-accurate head models,
the volume conduction aspect of EEG can be readily modeled in a simu-
lation (Hallez et al., 2007). To that end, we employed a three-layer
boundary element model (BEM) model which was accompanied by la-
beled cortical surface mesh regions-of-interest (ROIs, see Ales et al.,
2010 for details). We chose two of these cortical surface ROIs as the de-
sired signal sources (details below). The topographies of the recovered
components were subsequently contrasted with the lead fields of
these simulated sources, thus shedding light on the ability of the various
techniques to recover the desired signal generators. In other words, we
probed whether the techniques recover the underlying sources, and if
so, under what conditions.

Specifically, the BEM head model consisted of 20,484 cortical surface
mesh nodes and 128 electrodes placed on the scalp according to a subset
of the 10/5 system (Oostenveld and Praamstra, 2001). Two SSVEP gener-
ators were modeled: source 1 was located at the set of all nodes adjacent
to the calcarine sulcus (“peri-calcarine”) with a waveform given by
s1(n) = cos2n(1/20)n + cos2m(3/20)n, n = 1, ..., 1000. Meanwhile,
source 2 originated in the bilateral temporal poles with a waveform
given by s,(n) = uQ[sin2n(1/20)n + sin2mn(3/20)n], n = 1, ..., 1000,
where the amplitude u was a uniform random variable on the range
(0,1) which models trial-to-trial amplitude variability, and Q is a scaling
factor which equalizes the different number of mesh nodes in the ROIs of
the two sources. Moreover, spatially uncorrelated noise with a temporal
frequency content following the 1/f pattern (generated by applying a
100-tap finite-impulse-response filter designed by the MATLAB function
firls to a white Gaussian noise sequence) was added to the signal at each
electrode. The time-domain SNR of the resulting signal was — 34 dB, fall-
ing in the range corresponding to real EEG (Goldenholz et al., 2009). The
array data was then converted to the frequency-domain using a
1024-point FFT and only the frequency bins corresponding to the
F = 2 SSVEP frequencies (1/20 and 3/20) were retained for the
component analysis.

Real data set

SSVEPs were collected from 22 subjects (gender-balanced, mean age
20 years) with normal or corrected-to-normal visual acuity. Informed
consent was obtained prior to study initiation under a protocol that
was approved by the Institutional Review Board of Stanford University.
Visual stimuli were presented using in-house software on a contrast lin-
earized CRT monitor with a resolution of 800-by-600 and a vertical re-
fresh rate of 72 Hz. Stimuli consisted of oblique sinusoidal gratings
windowed by a 10 degree square centered vertically to the left or right
of fixation, depending on the hemifield being stimulated. Stimuli for
each hemifield were mirror symmetric, with gratings on the left oriented
at 45°, and those on the right oriented at 135°. For both hemifields, the
spatial frequency of the gratings was 3 cycles per degree, with mean lu-
minance kept constant throughout the experiments. Stimulus contrast
was defined as the difference between the maximum and minimum lu-
minance of the grating divided by their sum. The contrast of the stimulus
was temporally modulated (i.e., contrast reversal) by a 9 Hz sinusoid.
Each stimulus presentation consisted of ten 1-second presentations of
contrast reversal. Each 1 s presentation occurred at a fixed contrast,
with the first set to 0.05, the last at 0.8, and the rest logarithmically
spaced between these two values. The 22 subjects were split into two
groups of 11. For one group, the stimulus was presented 90 times in
the right visual field, and 10 times in the left visual field, with the order-
ing randomized before the beginning of the session. For the other group,
these numbers were reversed. In the analysis, we retained only the 90
trials corresponding to the predominantly stimulated hemifield.

The EEG was acquired using a 128-channel electrode array (Electri-
cal Geodesics Inc, OR) at a sampling rate of 500 Hz with a vertex refer-
ence electrode. All pre-processing was done offline using in-house
software. Signals were band-pass filtered between 0.1 Hz and 200 Hz.
Channels in which 15% of the samples exceeded a fixed threshold of
30 pV were replaced with a spatial average of the six nearest neighbors.
Within each channel, 1 second epochs containing samples exceeding a
fixed threshold (30 V) were rejected. The EEG was then re-
referenced to the common average of all channels. Spectral analysis
was performed via a Discrete Fourier Transform with 0.5 Hz resolution.
The contrast reversing stimuli generated VEPs whose spectra were
dominated by even multiples of the presentation frequency (i.e., 2nd,
4th and 6th harmonics); as such, the real- and imaginary-components
of these 3 Fourier coefficients across the array formed the 128-by-6
data record stemming from each trial.

Results

To evaluate the proposed technique, we applied RCA to two SSVEP
data sets whose full details are described in the Methods section. Briefly,
the first is a synthetic data set which employs a BEM head model to sim-
ulate the propagation of cortical signals to an array of scalp electrodes;
the simulation analysis allows for ground-truth measurements of the
SNR as well as a comparison of recovered component topographies
with the lead fields of the underlying sources. The second (real) data
set was acquired in a paradigm consisting of visual stimulation of the
left- or right-hemifield with sinusoidal gratings presented at a temporal
frequency of f = 9 Hz. In addition to RCA, we evaluated the popular CSP
(Blankertz et al., 2008) method as well as PCA.

We first present the results of evaluating the three component
analysis techniques on the synthetic data set, beginning with an ex-
amination of the extracted components. When comparing the scalp
topographies of the various components, we depict not the weights
themselves (i.e., the “W”) but rather their projection onto the scalp
(i.e., the “A”, see Methods section). For a detailed explication of the
computation of this scalp projection, please refer to the Methods sec-
tion “Component scalp projections” and Haufe et al. (2014) and Parra
et al. (2005).
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Fig. 2 illustrates the scalp projections of the first two components re-
covered by each method, where we have chosen a representative draw
from the Monte Carlo simulation to construct the figure. The lead fields
corresponding to the ground-truth signal sources are illustrated in
Panel A: source 1 has a symmetric front-to-back dipolar topography
roughly centered over electrode Oz. Meanwhile, source 2 is marked by
bilateral poles over temporal electrodes and frontal negativity. Panel B
depicts the topographies yielded by the CSP technique: the lead fields
of sources 1 and 2 are recovered upon inclusion of 30 and 50 trials, re-
spectively, in the analysis. On the other hand, PCA recovers the desired
signal topographies at just 10 trials; note, however, that the orthogonal-
ity constraint inherent to PCA leads to a distortion (i.e., lack of positivity)
in the recovered topography of PC2 over central electrodes (Panel C).
RCA cleanly recovers the topographies of both SSVEP generators at 10 tri-
als (panel D).

Fig. 2 was derived from a representative but single simulation draw;
a more complete evaluation of the recovered components is shown in
Fig. 3, which depicts the median deviations (across simulation draws)
between the obtained component scalp projections and the underlying
lead field. That is, we use the vector angle between the first component
of each method and topography of source 1 as a measure of “goodness”.
For all values of number of trials, RCA yields the lowest angular error
(p<0.001, n = 500, paired, left-tailed Wilcoxon signed rank test). PCA
outperforms CSP for 10-30 trials (p < 0.001, n = 500, paired, left-
tailed Wilcoxon signed rank test).

A

Source 1

Source 2

While the physiological plausibility of an extracted component is cer-
tainly important to inferring the corresponding source, in some applica-
tions (for example, signal detection), it may be appropriate to sacrifice
physiological meaning in order to achieve a high SNR. This entails focus-
ing the spatial filter weights on the channels which exhibit low noise
power. To that end, Fig. 4 displays the SNRs yielded by the first compo-
nents of each method as a function of the number of available trials. The
data points convey the median value across simulation draws. At 10 trials,
RCA and PCA yield significantly higher output SNRs than CSP (p < 0.001,
n = 500, paired, right-tailed Wilcoxon signed rank test). However,
given enough input data (i.e., >50 trials) CSP is able to identify the null
space and thus achieves significantly higher SNR (p < 0.001, n = 500,
paired, right-tailed Wilcoxon signed rank test).

Evaluation on real data

We now turn to the evaluation of the component analysis techniques
on a real data set. Similar to what was described above for the simulated
data, we sought to evaluate the physiological plausibility of the compo-
nents yielded by RCA and its alternatives. Here, however, we do not pos-
sess ground-truth information as to the lead fields of the underlying
cortical sources. From the anatomy of the human visual system, howev-
er, input in the left visual field (i.e., left “hemifield”) is processed in the
right cerebral hemisphere and vice versa. Thus, one way of assessing
the physiological relevance of the obtained components is to compute

10
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5 Sl 50
: yEEE trials
N v
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Fig. 2. Sample topographies recovered by component analysis techniques as a function of the number of available trials per simulation draw. (A) Lead fields of the first (top panel) and
second (bottom panel) SSVEP sources employed in the simulation, as computed from a three-layer BEM head model. (B) CSP requires 30 (50) trials to recover source 1 (2). (C) PCA re-
covers both SSVEP generators at 10 trials; however, due to its requirement of spatially orthogonal weight vectors, the topography of PC2 is distorted over central electrodes. (D) RCA clean-

ly recovers the lead fields of both sources at 10 trials.
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Fig. 3. Assessing the ability of component analysis techniques to recover the desired source in a synthetic data set. Each data point conveys the median (across Monte Carlo simulation
draws) vector angle between the first component's scalp projection and the lead field of the primary SSVEP generator. For all values of number of trials, RCA yields the lowest angular
error between component topography and underlying lead field (p < 0.001, n = 500, paired, left-tailed Wilcoxon signed rank test).

the projections separately for stimulation of the left and right
hemifields (LH and RH, respectively), and then observe whether a
contralateralization of the scalp topographies emerges. Moreover, to as-
sess the role of the input SNR in the physiological plausibility of the
resulting components, we performed the analysis separately for varying
levels of stimulus contrast and thus response amplitude. In what fol-
lows, we focus exclusively on the first component (i.e., CSP1, PC1, and
RC1) of each candidate method.

Fig. 5A displays the lead fields from both left and right primary visual
cortices (V1 (L) and V1 (R), respectively), as computed from a BEM
model of a sample head. Striate visual cortex is expected to be a major
generator of the activity evoked by this SSVEP paradigm. The dipolar to-
pographies exhibit mirror symmetry with the left primary visual cortex
projecting positively to the right occipital electrodes, and vice versa.

Fig. 5B depicts the scalp projections of CSP for both LH and RH at each
stimulus contrast. At low contrast, the topographies are visibly noisy and
lack the spatial structure expected in a visual paradigm (i.e., concentration
of activity at the occipital electrodes). A contralateralization of the scalp
topographies with stimulated hemifield is not apparent until 80% con-
trast. PCA topographies more closely resemble the maps expected from
this visual paradigm (Panel C). Moreover, there is a progressively greater
level of mirror symmetry in the obtained scalp projections with increas-
ing contrast, and clear contralateralization emerges at 53% contrast. The
scalp projections of RCA are shown in Panel D: a contralateralization
with the stimulated hemifield is readily observed at 16% contrast. More-
over, the topographies remain quite stable with contrast.

In order to quantify the goodness of the recovered components, we
computed the angular errors between all topographies and the corre-
sponding lead fields from primary visual cortex (Panel E). As expected
from the visual inspection of Panels B-D, RCA achieves smaller angular
errors at the low contrast values. Note, however, that it is difficult to
conclusively claim RCA as better at recovering the underlying sources
in this data set: extrastriate visual areas such as V2, V3, V3a, V4, and

MT, whose lead fields also contralateralize with the stimulated
hemifield, may also have been activated.

Next, we computed the single-trial SNR of the components found by
the three candidate methods, computing the spatial filter weights indi-
vidually for each subject to take into account inter-subject variability.
SNR estimation was facilitated by defining noise frequency bands as
lying directly adjacent to the frequencies of interest (i.e., the first three
even harmonics). We pool across the subject dimension to yield a distri-
bution of n = 1980 single-trial SNRs for each method and stimulus con-
trast level. Additionally, we performed a post-hoc exhaustive search of
the electrode space to identify the single electrode yielding the highest
single-channel SNR. The results are shown in Fig. 6, where the data
points depict the median SNR improvement over this best individual-
channel.

Notice first that the median SNR yielded by PCA is lower than that
given by the best individual channel for all contrast values. This is indic-
ative of the fact that dimensions explaining the majority of the variance
in EEG often capture noise sources. Meanwhile, RCA offers a median SNR
improvement of 14 4- 7% (mean 4 s.e.m.) at low-contrast, and 49 4- 18%
at high contrast, relative to the best channel. Finally, CSP yields large im-
provements over the best channel: 131 + 116% at low-contrast, and
262 £ 52% at high contrast. We performed a Wilcoxon signed rank test
to determine whether the differences in SNR improvements between
methods are significant: for all input contrasts, the SNRs yielded by
RCA are significantly greater than those yielded by PCA (p = 0.001,
n = 1980, paired, right-tailed Wilcoxon signed rank test). Similarly,
the CSP SNRs are significantly greater than those of RCA (p = 0.001,
n = 1980, paired, right-tailed Wilcoxon signed rank test).

To quantify the level of dimensionality reduction afforded by RCA on
this data set, we computed the proportion of reliability explained as a
function of the number of RCs (see Eq. (8) in Methods section). This is
the reliability analogue of the proportion of variance explained as a
function of the number of PCs, which was also computed on the data.
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Fig. 4. A comparison of the SNRs yielded by component analysis techniques on a synthetic data set, shown as a function of the number of trials. The data points convey the median value
across simulation draws. RCA and PCA significantly outperform CSP at 10 trials per simulation draw (p < 0.001, n = 500, paired, right-tailed Wilcoxon signed rank test). Given at least 50
trials, however, CSP is able to learn the null space of the noise and thus achieves significantly higher output SNRs (p < 0.001, n = 500, paired, right-tailed Wilcoxon signed rank test).
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Fig. 5. RCA yields physiologically plausible scalp topologies insensitive to input SNR. (A) Theoretical scalp projections from the left (L) and right (R) primary visual cortices as computed by
the boundary element model (BEM) of an individual human head. (B) The scalp projections of the first CSP as computed from data recorded during visual stimulation of the left (L) and
right (R) hemifields. At low contrasts, the topologies lack physiological plausibility and appear to be driven by noise; moreover, a lack of lateralization is apparent until the highest contrast
level. (C) Same as (A) but now for the first principal component (PC). The level of observed contralateralization increases with the stimulus contrast, highlighting that PCA components
become more physiologically plausible as the input SNR increases. (D) The scalp projections of the first reliable component (RC) exhibit physiologically plausible topographies with clear
lateralization even at low contrast-values, with the topographies remaining relatively stable over the entire contrast range. (E) Moreover, RCA topographies bear a close resemblance to the
lead fields from primary visual cortex, achieving lower angular errors (assuming V1 as the ground-truth) than CSP and PCA at low contrast values.

To shed light on the tradeoff between trial-to-trial covariance and vari- Fig. 7A displays the proportion of reliability explained as a function
ance explained, we then performed a “cross-over” analysis which con- of the number of retained RCs (solid line, filled markers) and PCs
siders the amount of trial-to-trial reliability captured by the PCs, and (dashed line, open markers) for the low (black markers) and high (ma-
the amount of variance explained by the RCs. genta markers) contrast case. The first RC captures 41% and 50% of the
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Fig. 6. RCA yields SNRs greater than the best single electrode. The figure shows the median (across n = 1980 trials pooled across subjects) SNR improvement over the best (post-hoc se-
lected) individual electrode as yielded by various component analysis methods. For all contrast levels, PCA yields degradations in SNR relative to the best channel. RCA provides a 14 + 7%
improvement in the low-contrast condition, while yielding 49 4- 18% improvement in the high-contrast condition. For all contrast values, the median RCA SNR is significantly greater than
that of PCA (p < 0.001, paired, right-tailed Wilcoxon signed rank test). Meanwhile, the CSP method offers improvements as high as 262 4 52% in the high-contrast case. The median CSP
SNR is significantly higher than the corresponding median SNR yielded by RCA (p < 0.001) for all stimulus contrasts.
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Fig. 7. Reducing dimensionality of SSVEP data sets by forming components optimizing the reliability and variance. (A) Proportion of reliability explained as a function of the number of
retained components, shown separately for low and high contrast stimulation (“low cont.” and “high cont.”, respectively). The first four RCs capture >95% of the trial-to-trial covariance
in the data, with 35-55% captured by the first four PCs (B) Proportion of within-trial variance explained as a function of the number of retained components. The first four PCs explain 75%

of the variance, with the first four RCs capturing <10% of the within-trial variance.

trial-to-trial covariance for the low- and high-contrast case, respective-
ly. Meanwhile, more than 93% of the reliability is contained in the first
four RCs, representing a dimensionality reduction of 128/4 = 32 while
only sacrificing less than 10% of the reliable SSVEP. Meanwhile, the
PCs are tuned to optimally capture within-trial variance and thus cap-
ture substantially less of the trial-to-trial reliability: the first four PCs
capture 38% and 54% of the trial-to-trial covariance for the low- and
high-contrast data, respectively. Moreover, while the cumulative curve
converges to unity at C = 6 RCs, more than ten PCs are required to ex-
plain the full reliability spectrum.

Fig. 7B displays the corresponding amount of variance explained as a
function of the number of retained PCs and RCs. The first four PCs ex-
plain 71% and 74% of the within-trial variance for the low- and high-
contrast case, respectively. Note, however, that the number of PCs re-
quired to account for the bulk (i.e., virtually all) of the within-trial vari-
ance is still substantially greater than ten. Meanwhile, the first four RCs
capture just 9% of the within-trial variance, exemplifying the stark dif-
ference in criteria being optimized by PCA and RCA.

Discussion

We have presented a novel component analysis technique which
drastically reduces the dimensionality of SSVEP data sets while retrieving
physiologically plausible scalp topographies and yielding SNRs greater
than the best single electrode. The method follows from the fundamental
assumption of evoked responses, namely that the neural activity evoked
by the experimental paradigm is reproducible from trial-to-trial.

The results of the simulation study revealed that RCA provides a de-
sirable tradeoff between physiological plausibility and output SNR. Spe-
cifically, the technique recovered the desired source topography with
comparable or lower angular error relative to PCA and CSP for all number
of trials per simulation draw (Figs. 2 and 3). Moreover, RCA achieves the
highest output SNR at <30 trials, with CSP significantly outperforming
RCA/PCA at >50 trials (Fig. 4).

The analysis of real data acquired in a single-hemifield visual stimu-
lation paradigm demonstrated the ability of RCA to yield physiologically
plausible components which contralateralize with the stimulated
hemifield even at low contrast (Fig. 5). PCA recovered components
which exhibit progressively more physiological plausibility with in-
creasing contrast; however, the output SNR of these extracted compo-
nents fell below that yielded by the best single channel. Finally, CSP
yielded high SNR components for all contrast levels, but sacrificed phys-
iological plausibility of the topographies, particularly at low contrast.

Application to time-domain evoked responses

While the focus of this work has been on reliability in the SSVEP
spectrum, maximization of trial-to-trial covariance can also be readily
exploited in the case of time-domain evoked responses (both transient
and steady state). By inserting time-domain electric potentials into the
columns of X;, and carrying forward the development in the Methods
section, the optimization of Eq. (6) identifies linear combinations of
electrodes whose temporal dynamics are maximally reproducible
from trial-to-trial. Each resulting RC is then comprised of a spatial to-
pography and a corresponding temporal waveform. The advantage of
such a time-domain approach is the greater number of samples typical-
ly comprising a single-trial. On the other hand, the SNR of the input data
is significantly lower than the SSVEP spectrum.

Relevance of simulation results

The simulation study performed here is clearly a simplification of the
actual neural environment that generates SSVEPs. Aspects of the simu-
lation that reflect potential deviations from reality include: dipolar
sources (Riera et al., 2012), average isotropic conductivity values
(Wolters et al., 2006), and uncorrelated additive sensor noise. Neverthe-
less, we feel that simulations are useful here in order to quantify the
tradeoffs inherent to the existing methods. While the figures of merit
obtained in a simulation may not necessarily translate to real settings,
their relative values (i.e., comparisons across methods) are more likely
to hold. Moreover, the validity of simulation results is boosted when
consistent with that found in evaluations on real data. Notice, for exam-
ple, the general agreement between the results of Figs. 2 and 5. Finally,
simulations are useful in that the ground truth lead field for the sources
is available. We showed in Fig. 3 that PCA distorts the expected topogra-
phy for the second source, but RCA does not.

Learning on individual versus aggregated data

As with any component analysis technique, a learning procedure is
employed by RCA to estimate the reliability-maximizing spatial filters.
An important question is whether one should learn on subject-
aggregated data, yielding a set of uniform RCs for the entire data set,
or rather compute the components separately for each subject. The
tradeoff here is between the noise level in the estimated covariance ma-
trices (subject-aggregated covariance has lower estimation noise) and
the ability to exploit individual differences in component topographies.
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For example, to construct Fig. 5, which aimed to characterize the reliable
activity evoked by the visual stimulation paradigm, we pooled data
from all subjects to learn the (smoothed) RCA spatial filters. On the
other hand, when comparing achieved SNR across component analysis
methods in Fig. 6, we opted instead to learn the optimal filters individ-
ually for each subject, as structural and functional variations are expect-
ed to lead to disparate topographies. Note that when learning the filter
weights individually, the resulting dimensionality-reduced data is not
congruent across subjects (i.e., RC1 of subject 1 generally lies in a differ-
ent space than RC1 of subject 2). As such, care should be taken when
comparing the projected spectra across data computed using different
spatial filters.

RCA as a reliability filter

Here we have focused the analysis to the space of the formed com-
ponents which encompass data integrated across multiple electrodes.
In some cases, it may be desirable to rather analyze the data in the orig-
inal electrode space. To that end, it is also possible to treat RCA as a “re-
liability filter” which outputs a data set whose dimensionality is that of
the original data set. This is achieved by first projecting the data onto a
set of C RCs, and then back-projecting this rank-reduced data onto the
scalp: if Y denotes the frequency-by-component RCA data matrix, and
the electrode-by-component matrix A denotes the corresponding
scalp projections (see Methods section), then the reconstructed

sensor-space data matrix follows as X = AY'. This procedure removes
dimensions exhibiting low trial-to-trial reliability, presumably corre-
sponding to noise sources, from the data. Conventional analysis

methods such as trial-averaging may then be employed on X.

Application to source imaging

We have shown here that the topographies of the various RCs bear
strong resemblance to the underlying lead fields generating the ob-
served SSVEP. This suggests that RCA may be combined with source lo-
calization approaches to yield robust estimates of the location of the
neuronal generators. Note that the conventional manner of performing
EEG source localization is to select an array of scalp potentials at a given
latency (or frequency-band) and project the resulting vector onto the
cortical surface using an appropriately generated inverse matrix.
While we do not engage here in a discussion of the legitimacy of the
resulting source location estimates, we do propose that the RCA scalp
projections (for example, Fig. 5D) may themselves be employed as in-
puts into a source localization algorithm. Note that these scalp projec-
tions are not tied any particular time instant: rather, they correspond
to the source of activity which is reliably evoked across trials. As such,
their use as source localization inputs eliminates the need to choose a
particular time instant at which to localize. The resulting cortical source
distribution (i.e., the output of the source localization) bears a time
course given by the RC whose scalp projection was used for the input.
Moreover, this procedure yields insight into the sources underlying
the reliable activity extracted by the component, and whether the RCs
represent vast mixtures of generators or more spatially localized
dipoles.

Application to BCIs

The proposed technique is primarily aimed at data sets collected in
neurobiological or clinical assessment settings. However, we anticipate
that RCA may also become relevant for BCI applications which learn pat-
terns of electrodes associated with a particular cognitive state. We pro-
pose that RCA be employed at the front-end as a feature selection step
which reduces the dimensionality of the input feature vector while
still capturing the reproducible neural features. Note that the technique
is inherently blind, requiring only multiple congruent data records

(i.e., without labels indicating the outcome of any associated task) to
learn the RCs. Moreover, the resulting features may yield better general-
ization due to their closer link to physiology.

Complex versus real-based implementation

Our optimization of SSVEP reliability was formulated with a single
spatial filter coefficient applied to each electrode's spectrum. Thus, the
procedure identifies linear combinations of channels which exhibit reli-
able even and odd spectra. By doing so, we have maintained purely real
input data and resulting filter coefficients, easing the interpretation of
the resulting components. An alternative implementation is to combine
the real and imaginary parts into a single complex coefficient and then
perform a joint optimization of the real and imaginary parts of the filter
coefficients across the array. Such an approach can potentially identify
reliable phase relationships among electrodes.

Goodness of the SNR as a quality metric

The SNR is a natural metric which certainly conveys the most obvi-
ous goal of a signal processing algorithm: reducing the noise. However,
it is worthwhile to point out that SNR becomes infinite for zero-noise
even if the desired signal has been greatly distorted. In other words,
the SNR down-weights signal distortion in favor of noise reduction.
However, electrodes which possess the lowest noise levels are not nec-
essarily those at which the cortical sources project to most strongly.
Thus, we caution from interpreting the SNR as a “gold-standard” in mea-
suring the goodness of a spatial filtering algorithm. There are cases in
which one may be willing to sacrifice noise reduction in order to obtain
a minimally distorted version of the underlying source signal. To that
end, several approaches to managing the tradeoff between signal distor-
tion and noise reduction have been proposed in related signal process-
ing fields (Chen et al., 2006).

Emergence of reliability in neuroscience

Our findings add to the emerging body of evidence pointing to the
utility of employing reliability as a criterion with which to measure and
extract meaningful neural signals. Highly reliable neural responses have
been observed in extensive parts of cortex during naturalistic audio(visu-
al) stimulation in fMRI (Hasson et al., 2004), EEG (Dmochowski et al.,
2012, 2014), and magnetoencephalography (MEG) (Koskinen and
Seppd, 2014; Lankinen et al., 2014). Moreover, a recent fMRI study has re-
ported that the level of inter-subject correlation in the blood-
oxygenation-level-dependent (BOLD) signal is greater when the stimu-
lus is presented in 3D (Gaeblerlabel et al., 2014). In terms of trial-based
applications, a method to identify correlations among spectral envelopes
of multivariate electrophysiological recordings has been proposed in
Dahne et al. (2014). Finally, reproducibility of neural activation has
been linked to conscious perception (Schurger et al., 2010). Collectively,
these findings highlight the increasing use of reliability as a meaningful
feature in neuroscience: indeed, data collection in the brain sciences al-
most always encompasses multiple data records (i.e., multiple trials, mul-
tiple subjects, or both). Given that the desired signal is expected to be
common to these records, reliability represents a natural means of sepa-
rating the reliable signal from the variable noise.

Application matters

While we have presented RCA as an alternative to commonly
employed methods such as CSP and PCA, we do not suggest that it is
the “best” component analysis method for analyzing SSVEPs. Rather,
we feel that the field of cognitive neuroimaging has not reaped the ben-
efits of spatial filtering approaches in the same way that the BCI world
has. For BCls, SNR may in fact be the most appropriate metric, as it
may best relate to information bit rate. However, for elucidating neural
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processing in human visual cortex, extracting components which have
physiological relevance is of utmost importance. Here, we believe that
exploiting the trial-to-trial reliability of evoked responses is an appro-
priate way of bringing the recovered components closer to physiology.
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