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List-Mode Likelihood: EM Algorithm and Image
Quality Estimation Demonstrated on 2-D PET

Lucas Parra* and Harrison H. Barrett,Member, IEEE

Abstract—Using a theory of list-mode maximum-likelihood
(ML) source reconstruction presented recently by Barrett et
al. [1], this paper formulates a corresponding expectation-
maximization (EM) algorithm, as well as a method for
estimating noise properties at the ML estimate. List-mode
ML is of interest in cases where the dimensionality of the
measurement space impedes a binning of the measurement data.
It can be advantageous in cases where a better forward model
can be obtained by including more measurement coordinates
provided by a given detector. Different figures of merit for
the detector performance can be computed from the Fisher
information matrix (FIM). This paper uses the observed FIM,
which requires a single data set, thus, avoiding costly ensemble
statistics. The proposed techniques are demonstrated for an
idealized two-dimensional (2-D) positron emission tomography
(PET) [2-D PET] detector. We compute from simulation data
the improved image quality obtained by including the time of
flight of the coincident quanta.

Index Terms— EM algorithm, list-mode data, maximum-
likelihood, PET reconstruction, time-of-flight PET.

I. INTRODUCTION

T HE general task in emission computed tomography (CT)
is to reconstruct a source distributiongiven a set of

measured quantum events Maximum likelihood
(ML) can solve this general task if provided with a model
of the measurement procedure, i.e., the probability density
function (pdf) of obtaining a particular set
of measurements given a source distribution

Often, a detector provides the observer with a multitude
of continuous measurements, such as position coordinates,
time measurements, angles, energies, or other detector readouts
caused by each independent event. From these measurements,
usually a small set of coordinates is estimated in an attempt
to describe the events in a sufficient way. One reduces the
number of coordinates because the standard reconstruction
techniques require dividing the measurement space into bins.
The number of bins increases exponentially with the number
of measurement coordinates. Consequently, the computational
costs and memory requirements of the reconstruction also
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increase exponentially with the dimensionality in the mea-
surement space. The estimation involved in the dimensionality
reduction and binning process may lose useful information. In
particular, we may lose information useful for a probabilistic
model of the detection process. The standard approach of
dividing the measurement space into bins may, therefore,
not be optimal in the case of multidimensional continuous
measurement coordinates, where the number of bins matches
or exceeds the number of events. Under these circumstances
a list-mode ML approach is required, where the detector
readouts per event are stored in a list, and the reconstruction
does not demand binning of data.

In a recent paper, a general theory for such a list-mode
ML has been presented by the authors [1]. The corresponding
expectation-maximization (EM) algorithm described in this
paper has been presented in [2]. A brief synopsis of the theory
is presented in the Section II. The corresponding expectation-
maximization (EM) algorithm for this list-mode ML approach
is formulated in Section III. The EM algorithm for finding
the ML solution to the source reconstruction in emission
tomography has been extensively studied in the past. The
emphasis has been, however, on binned data [3]–[7]. Even in
the paper of Snyder and Politte [8], which attempts to tackle
list-mode data, the continuous space is partitioned into discrete
values.

The treatment of the problem as a ML estimation permits us
to formulate computationally efficient figures of merit of the
reconstruction and the detector. This calculation is presented
in Section IV. It is based on the Fisher information matrix
(FIM) [9], which has been used in context of image quality
in the past [10].

In Section IV, two figures of merit will be derived, a
signal-to-noise ratio (SNR) for unbiased density estimation
and another SNR for lesion detection. The feasibility of
the algorithm will be demonstrated in numerical simulations
for an idealized two-dimensional (2-D) positron emission
tomography (PET) [2-D PET] system in Section V including
time-of-flight information.

II. L IST-MODE MAXIMUM -LIKELIHOOD RECONSTRUCTION

Consider a discrete source distribution to be estimated
from continuous-valued measurement data. Denote the
unknown elements of the discrete source distribution with

where is the expected number of photons
emitted from source bin per unit time. Let the sensitivity

be the corresponding probability that an emitted photon
is detected. The probability for a detected event to
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originate in the source bin will be

(1)

We need to know the probability density that a
detected event generated in binleads to a measurement

in the detector. Here, denotes the dimensionality
of the measurement space. The knowledge of this probability
density is crucial for the ML reconstruction approach. As an
example we will derive in Section V-A an analytic expression
for this probability density for a 2-D PET detector.

The probability of measuring a single event with coordinates
originating anywhere in the distribution is given by

(2)

The detector measures a set of events in time
, where each measurement is independently, and identically

distributed (i.i.d.) according to The logarithmic like-
lihood of the set of measurements is, therefore

(3)

During the measurement one can fix the measurement time
and the total count becomes an additional random

variable measured during the experiment. Alternatively, one
can fix the total number of counts , in which case the
measurement time becomes a stochastic variable. In [1]
we refer to these cases as preset-time, and preset-count,
respectively, with and as
the corresponding sets of measurements. This leads to the
log-likelihoods

(4)

(5)

In the preset-time case, the total photon countis Poisson
distributed with mean rate

where (6)

The interarrival times of a Poisson process are indepen-
dently and exponentially distributed with rateThe measure-
ment time is the sum the interarrival times, and follows

an Erlang density

(7)

The log-likelihoods for preset-count and preset-time are,
therefore, the same up to an additive term , which
is independent of and, hence, a constant with respect to
maximization.

The ML principle suggests estimation of the unknown
source distribution by finding the maximum of (4) or (5) with
respect to We have to constrain here the estimatesto
positive solutions, so

(8)

III. EM A LGORITHM

To find the ML solution we suggest the EM algorithm. The
present problem can be treated as an instance of a density
mixture model discussed in the seminal paper of Dempsteret
al. [11]. In the next section we will see that the maximization
step (M-step) can be solved explicitly, which allows us to
combine it with the expectation step (E-step), leading directly
to a fixed-point iteration

(9)

A nice feature of this particular set of update equations
is that the positivity constraint is automatically satisfied if we
start the iteration with positive values, In Section III-
B it will be shown that this iteration converges to a global
maximum of the likelihood function, which is then the desired
estimate

The computational complexity of the algorithm is
for every iteration. The complexity for EM in the conven-
tional ML approach for binned data [4] is ,
where denotes the number of pixels in the binned
measurement space of the detector. The proposed approach
has, therefore, a lower-order computational cost per iteration
in cases where Note that increases
exponentially with the number of measurement dimensions

A. Derivation of EM Update Equations

The EM algorithm [11] regards the measured data as incom-
plete information about the underlying stochastic process. For
the EM algorithm one embeds the measured data in a larger
“complete” data space. The corresponding likelihood function
provides a complete description of the data generation, given
the parameters in question. The larger data space, however,
cannot be sampled. One computes, therefore, the expectation
of the log-likelihood function of the complete data, given the
actually measured data and a current estimate (E-step).
This expectation is maximized with respect to the parameters
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(M-step) to obtain a new parameter vector In [11]
it is shown that each EM step increases or maintains the
likelihood, The EM steps are iterated
and can be sometimes shown to converge to a maximum of
the original likelihood function. Sometimes, in practice only
a few iterations are required, and every iteration consists of
simpler update rules than the original optimization problem.

Equation (2) may be regarded as a density mixture model,
where the correspond to densities of the mixture and

to the mixture coefficients. For the mixture model,
Dempsteret al. suggest extending the data by the unobserved
variables , defined by

if event originated in bin
otherwise.

(10)

Note that the column vector contains only one nonzero
entry. The are independently drawn from

The log-likelihood of the complete data for
preset-count, , is

(11)

(12)

(13)

The last equation follows from the definition (10)
and the mixture (2). In the E-step we have to compute
the estimate of given the actual measure-
ment data and fixed , i.e., margin-
alize over the hidden variables. Conven-
tionally, this is denoted in short by

Since (13)
is linear in this amounts to replacing by its expected
value which is

(14)

Here, denotes a joint probability (density) for
and In the M-step we have to compute the maximum of the
expectation of , which we obtain by solving for vanishing

derivatives

(15)

This gives for the maximum,

Together with (1) and (14) we arrive at the fixed-
point iteration (9).

B. Convergence

An original convergence proof for the EM algorithm under
the positivity constraint for emission as well as for transmis-
sion tomography has been presented in [12]. The proof is rather
general and translates entirely to the present case. Rather than
repeating it in its full length, we restrict ourself to verifying
the main conditions on the likelihood function.

Global convergence is mainly a consequence of a strictly
concave likelihood function. The Hessian of the log-likelihood
(4) or (5)

(16)

is negative definite provided that the matrix ,
with , is of full rank, and i.e.,
there are more events than pixels. Under this reasonable
assumption the log-likelihood has a single global maximum.
To show convergence, Lange and Carson proof in [12] that

To this end they need to
verify that is bounded from below for

and by a positive constant, which does
not depend on the particular choice ofDirect differentiation
of (15) gives

(17)

(18)

A further consequence of the strict concave nature of the
likelihood is that the sequence lies within a convex set.
Therefore, both (17), and (18) are bounded from below by the
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same positive constant, i.e., the minimum of (17), and (18)
in the convex set. The remainder of the proof in [12] applies
without further conditions on the particular likelihood function.

IV. I MAGE QUALITY AND THE FISHER INFORMATION MATRIX

In order to assess the quality of a imaging system we
have to analyze its noise characteristics, which may depend
not only on the information content of the measurements,
but also on the estimation algorithm we use. Anefficient
estimator is one that achieves the lowest possible variance
of the unbiased estimate. This (best possible) lower bound
obtained by using an unbiased efficient estimator can be
used to assess the information content of the measurements
themselves and, therefore, the performance of the detector.
Note that we are restricting ourselves to unbiased estimators.
Most currently used estimation algorithms compute biased
estimates by using prior knowledge and thus attempt to
obtain an improved image quality. This is true for filtered
backprojection, Bayesian reconstructions with regularization
terms, maximuma posterioriestimators, etc. The variance of
an unbiased estimator can nevertheless be a useful indicator for
the information content of an image. Note also that the bias is
defined here with respect to the discrete object representation.
In reality, of course, an object is a continuous distribution,
and unbiased estimators of the actual object are not generally
possible because of null functions of the continuous-to-discrete
system operator.

The Cramer–Rao inequality gives us the lower bound de-
scribed above for the variance of an efficient, unbiased esti-
mator in terms of the FIM [9]

(19)

Here, is the FIM for i.i.d. measurements drawn from

(20)

Here, the mean is Performing
this integration over the multidimensional continuous space is
not feasible. Instead one might use the actual measurements

to perform a Monte-Carlo integration by replacing

(21)

Using this approximation and inserting (2) and (1) into (20)
one obtains, after differentiation

(22)

In practice, one will further approximate the true, but
unknown density with its unbiased estimate, i.e., This
technique of computing the FIM from the observed data is
known in the literature as observed FIM [13].

There are several quality measures that can be obtained
using the FIM. One straightforward quality measurement is the
SNR of the source intensity estimate given the measurements
of the detector, for which we now have an upper bound,

SNR (23)

We now have a tool to assess the quality of measured
data, because we can calculate the best possible performance
in obtaining an unbiased estimate of the unknown source
distribution. We can, therefore, assess the quality of the
detector for the task of estimating the source intensities.

Note that computing the inverse will only be feasible for
small images or small sections of an image. Additionally, one
may argue, that the pixel value is not an estimable parameter in
general, since if the pixel is small, many different sets of pixel
values can lead to the same data [10]. The variances of the
pixel values should still be determined, since they are required
for calculating other figures of merit, but in themselves they
do not constitute a useful figure of merit. Barrettet al. [10]
suggest using the discrimination of a known signal against
a known background as a sensible quality measure. Under
assumption of an optimal linear observer, one can express the
SNR of a signal-discrimination task in terms of the FIM

SNR (24)

The difference of the two known signals to be discriminated is
given here by In a lesion-detection task the typical signals
to be discriminated are a known density distribution and the
same distribution with a superimposed lesion. Note that, unlike
(23), there is no need to compute the matrix inverse ofin
(24). We will show in Section V-C that the two measures give
comparable results in our 2-D PET simulation.

Note that expression (22) is itself only a noisy but unbiased
estimate of the Fisher matrix. It has its own standard devia-
tion which decreases with increasing The resulting SNR
estimates in the simulations of the following section however,
did not display substantial deviations.

For the evaluation of (23) or (24), the dataset used in the
source estimation is sufficient. It is not necessary to compute
the ensemble statistics by performing the same experiment
several times. This is possible only because we assume to
know the detector statistics, described by the model
The results obtained here and in the previous section depend
on how well the analytic expression for models the
real detector.

V. APPLICATION TO 2-D PET RECONSTRUCTION

Including the time of flight (TOF) of coincident quanta
has been shown to improve the image quality of PET de-
tectors. Introducing this additional coordinate in a binned
ML approach has been difficult, however, as the number of
bins increases drastically with the number of measurement
coordinates. Nevertheless, binned ML and EM algorithms
have been developed by making simplifying assumptions
about the forward model [14], or by quantizing the list-
mode data [8]. Similarly, inverse-filtering algorithms have
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been suggested [15], [16], where the analytic inversions of
the forward projection are obtained only after a series of
simplifications.

This section serves multiple purposes. First, it shows the
feasibility of the algorithm (9) for the reconstruction of a
source distribution in an idealized PET detector model. Sec-
ond, it demonstrates the usefulness of the proposed estimation
technique (22) for calculating the SNR directly from a sin-
gle measurement data set. Third, it stresses the fact that
this method can easily incorporate additional measurement
coordinates leading to improved image quality.

A. Model Description

We consider a single detector ring that scans a 2-D slice
through the source distribution. We assume a thick crystal,
where the depth of interaction can be determined. The detector
gives for each emission two 2-D position coordinates ,

and also measures the differencein the time of flight
for the two coincident quanta. This totals to five continuous
coordinates for each positron decay. We
assume independent zero-mean Gaussian measurement errors
in all coordinates. Let us denote the actual coordinates of a
detected event pair by , to differentiate from
the noisy measurements For a perfect detector we would
have We want to calculate , which we can
write by Bayes’ rule as , where

The probability of an event having been
generated in bin given an observed for a noisy detector
will be the pdf of the noiseless event convolved with Gaussian
errors

(25)

Here, we have set ,, a multivariate
Gaussian with mean , and covariance matrix determined
by the measurement resolution in each coordinate. Implicitly,
we also assumed that the measurement error is independent
from its location Note that we
are looking at the Gaussian measurement error here in a
posterior sense, the probability of the true valuegiven the
measurement

Let us denote by the 2-D coordinates of a source
point. We replace the posterior by the pdf
of an emission having originated inwithin an area element

, that is, The measure
determines the shape and location of what we want

to consider as pixel In practice, this measure will often be
uniform over a square area of the size of a pixel centered at
For analytical purposes, however, it will be useful to consider
both “Gaussian pixels” and point-like pixels, where the mass
of the pixel is concentrated at its center Equation (25) now
becomes

(26)

Fig. 1. The measured coordinates are the pointsxxx1 and xxx2, and t is the
difference in the time of arrival. The actual events, however, occurred here
at AAA0

= (xxx0

1
; xxx0

2
; t0): The distancesd and h of the measured event to the

centerzi of pixel i are given byd = kmmm(mmm � (zi �xxx1))� (zi �xxx1))k and
h = kmmm((c=2)t �mmm � (zi � xxx1)) + 1=2(xxx2 � xxx1))k:

Now, once the exact event pair and time are given, the
corresponding location of the positron emission is completely
determined, and, therefore, The
quantity we need in (9) and (22) is given by

(27)

The factor is irrelevant since it cancels out in (9)
and (22), and the integral on the right is the required forward
model. This integral can be evaluated by changing the coordi-
nate system to new coordinatesand , determined by and

, as shown in Fig. 1. We assume the same spatial resolution
of for all position coordinates and a time resolution of
After some approximations described below we obtain

(28)

The Gaussian kernel is given by
The effective variance depends on the

measurement and the coordinates of the center of the
pixel in question

where is the normalized
direction of the emission, and the speed of light. Note the
factor in the effective time resolution, which translates
1-ns time accuracy into 15-cm space information.

The simple expressions in (28) could only be obtained by
using a Gaussian measure describing
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Fig. 2. Sketch of the source distribution plotted together with 300 simulated
events.

a circular “pixel” with the size given by the standard deviation
We have also assumed that all standard deviations are small

compared to Furthermore, we have simplified the
statistics in the crystal by neglecting the exponential decay
as the ray penetrates into the detector and by neglecting the
boundaries of the crystal in the integration of the Gaussian
errors.

There are two natural choices for We can either con-
centrate the mass of the pixel to its center by setting

, approximating, thus, the original density by a point
density on a regular grid, or we might want to approximate
the distribution by overlapping Gaussian pixels, which give for

a smooth representation of the distribution, where
denotes the pixel size.

B. Reconstruction

A detector with a ring radius of 35 cm and a crystal
thickness 5 cm, as seen in Fig. 1, was simulated. The spatial
resolution of the measurement was 4 mm full width at
half maximum (FWHM). These values are typical for common
PET detectors, e.g. the SUPER PETT 3000 [17]. For a realistic
number of events (10–10 per slice) an array of 64 64 or
128 128 pixels is reasonable. We limit ourselves to 6464
pixels. Fig. 3 shows the reconstruction results for 200 000 and
one million events using (9). We stopped the iteration when

was less than some preset, which was
achieved in less than 20 iterations for There were
no notable difference observed in the reconstruction results for
the two choices of pixel measures mentioned above.

C. Improved SNR Using Time-of-Flight

The crucial question for any reconstruction algorithm is the
achievable image quality. As explained in Section IV, it is
possible to calculate an upper bound for the estimated SNR
from the information of a single dataset. A complication in this
technique is the need for computing the inverse of the FIM.

(a)

(b)

(c)

Fig. 3. (a) A 64�64 source distribution in a 40 cm�40 cm field (pixel size
6.2 mm). (b) Reconstruction using 200 000 simulated events. (c) Reconstruc-
tion using one million events. The FWHM spatial measurement resolution in
the detector is 4 mm and the time resolution 0.4 ns.
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Fig. 4. (top) SNR of the estimation of a pixel value calculated according
to (23). From bottom to top the curves correspond to a pixel size of 5, 7.5,
10, and 15 mm. (bottom) SNR of the lesion detection task according to (24).
The object is 16 cm� 16 cm. From bottom to top the curves correspond to
a lesion diameter of 5, 10, 20, 30, 40, and 50 mm. In both cases a 32�32
pixel uniform distribution is used. The spatial measurement resolution has a
realistic value of 0.5 cm.

This is an operation of the order , which effectively
limits the evaluation of the SNR to a field of about 1000 pixels.
We are, therefore, either limited to a physically small region in
the source distribution or a larger field with a coarse resolution.
We calculated the SNR for a 3232 field of varying pixel
size and, therefore, varying object size. The main interest is to
demonstrate the improved image quality due to the additional
time measurement.

Fig. 4 shows the resulting normalized SNR for a variety of
time measurement resolutions. The SNR values are normalized
by the square root of the average number of events per pixel

The SNR in a strict Poisson distribution is propor-
tional to A normalized SNR of one corresponds,
therefore, to the theoretical upper limit given by Poisson
statistics.

For high precision in the time and space measurement the
SNR reaches the theoretical limit. This corresponds to the
complete knowledge of the location of the positron emission.
Less precise time measurements correspond to less knowledge
about where the emission occurred along the line projection
given by and Note that 1 ns corresponds to 15 cm,
which is roughly the object size at a pixel size of 0.5 cm.
So, in this example only time resolutions better than 1 ns
will improve the SNR notably at a pixel size of 0.5 cm.
If the pixel size in the reconstruction is smaller than the
actual spatial measurement resolution, even an exact time
measurement cannot resolve the ambiguity as to where the
emission originated.

Computing the inverse of the FIM limits us to a subsection
of the image. For a real detector, however, one wishes to
have an SNR estimate for the complete image field at the
required resolution. One will choose then the SNR of the lesion
detection task according to (24). Although we are not limited
in the number of coordinates, we keep the 3232 field for the
purpose of comparison. We use now a fixed object size of 16
cm 16 cm. The circular lesion is located at the center of the
detector (and object) and has unit contrast. Fig. 4: Right shows
the SNR for varying lesion diameters and varying time reso-
lutions. The time resolutions reported in the literature range
from 0.1 ns up to a few ns [17], [18]. The SNR values have
been normalized by , where denotes the mean
number of events contributing to the lesion. Again, we observe
that an improved time measurement can increase the quality
of the image. The two SNR measures give comparable results.

VI. CONCLUSION

The probabilistic description of the generation of events
from a source distribution allows us to formulate an ML
approach to reconstruction. Rather than binning the measure-
ment space, the measurement coordinates can be used directly
for computing the transition probabilities. No information
is, therefore, lost in the binning process. This also seems
advantageous in cases where the number of bins exceeds the
number of detected events, which may become relevant for
future detector generations in emission tomography and other
modalities. In this paper, the EM scheme for solving the list-
mode ML problem has been presented. An efficient technique
for estimating the FIM has been presented. Ensemble statistics
are circumvented by using the measured events to perform a
Monte Carlo integration. Two SNR measures based on the
FIM of the unbiased estimator were discussed. The SNR of
a lesion detection is preferable for practical image sizes and
resolutions. For both algorithms it is crucial to accurately de-
scribe the forward model of the detector in an analytic pdf. The
feasibility of the proposed techniques has been demonstrated
for an idealized 2-D PET detector. In particular, we show how
additional measurement coordinates can improve the different
SNR quality measures.

Additional research may demonstrate the technique on real
detector data, while comparing its performance to binned ML
reconstruction. This may further substantiate the notion that a
better probabilistic model can help increase image quality.
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The present limitation on biased estimators may be cir-
cumvented by using prior knowledge on the expected source
distributions. In maximuma posteriori estimation (MAP)
the likelihood is combined with prior distributions on the
parameter MAP problems in the binned case have also
been solved with EM algorithms [19], and possibly a similar
approach could be taken here.
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