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Abstract

Watching a speaker’s facial movements can dramatically enhance our ability to comprehend words, especially in noisy
environments. From a general doctrine of combining information from different sensory modalities (the principle of inverse
effectiveness), one would expect that the visual signals would be most effective at the highest levels of auditory noise. In
contrast, we find, in accord with a recent paper, that visual information improves performance more at intermediate levels
of auditory noise than at the highest levels, and we show that a novel visual stimulus containing only temporal information
does the same. We present a Bayesian model of optimal cue integration that can explain these conflicts. In this model,
words are regarded as points in a multidimensional space and word recognition is a probabilistic inference process. When
the dimensionality of the feature space is low, the Bayesian model predicts inverse effectiveness; when the dimensionality is
high, the enhancement is maximal at intermediate auditory noise levels. When the auditory and visual stimuli differ slightly
in high noise, the model makes a counterintuitive prediction: as sound quality increases, the proportion of reported words
corresponding to the visual stimulus should first increase and then decrease. We confirm this prediction in a behavioral
experiment. We conclude that auditory-visual speech perception obeys the same notion of optimality previously observed
only for simple multisensory stimuli.
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Introduction

Vision often plays a crucial role in understanding speech.

Watching a speaker’s facial movements, especially lip movements,

provides input that can supplement the information from the

speaker’s voice. ‘‘Lip-reading’’ or ‘‘speech-reading’’ allows hear-

ing-impaired individuals to understand speech (e.g. [1,2]), and in

subjects with intact hearing abilities, substantially facilitates speech

perception under noisy environmental conditions [3,4,5,6,7]. This

benefit has been quantified by measuring performance enhance-

ment due to visual input as a function of auditory noise

[8,9,10,11]. In these experiments, participants were asked to

identify spoken words from a checklist, delivered during an

auditory-alone condition and during an auditory-visual condition

in which the speaker’s face was visible. The benefit from the visual

information, measured in percent correct, was found to be greatest

when the auditory stimulus was most noisy (but see [12,13]). This

seems to be evidence for inverse effectiveness, a widely cited

concept stating that the largest multisensory enhancement is

expected when a unisensory stimulus is weakest [14]. However,

when multisensory word recognition was tested under more

natural conditions (without a checklist), maximal gain was found

not at low, but at intermediate signal-to-noise ratios (SNRs) [15],

in apparent contradiction to inverse effectiveness.

Here, we first replicate and extend the findings by Ross et al.

[15]. We then examine human performance when veridical visual

speech information is replaced by purely temporal visual

information and find that a minimum sound quality is required

for such visual input to improve performance. This is again

inconsistent with inverse effectiveness. We formulate a Bayesian

cue integration model that explains these behavioral findings. In

Bayesian cue integration, the relative reliabilities of cues are taken

into account when inferring the identity of the source stimulus. For

simple stimuli, human multisensory integration has been shown to

be close to Bayes-optimal (e.g. [16,17,18]). For identification tasks

using multidimensional stimuli such as speech, the Bayesian model

predicts visual enhancements that are largest at intermediate

auditory SNRs, provided that a sufficiently large vocabulary is

used. Inverse effectiveness is predicted only when the underlying

feature space is low-dimensional. To further test the Bayesian

theory, we generate a prediction for the perceptual integration of

slightly incongruent auditory and visual stimuli: at very low SNR,

PLoS ONE | www.plosone.org 1 March 2009 | Volume 4 | Issue 3 | e4638



the percentage of reported words that match the visual stimulus

should increase as SNR increases, even though the weight to vision

decreases. We report behavioral data confirming this counterin-

tuitive prediction. Together, these results suggest that Bayesian

optimality of cue integration is not limited to simple stimuli.

Methods

Psychophysics
Subjects. Thirty-three volunteer subjects (14 female) were

recruited among the student population at CCNY and gave

informed consent (written) in accordance with the guidelines of the

IRB at CCNY. Seventeen subjects participated in the first

experiment, which only contained matching auditory and visual

stimuli (congruent), while 16 subjects participated in the second

experiment, which also included conflicting auditory-visual stimuli

(incongruent). Subjects were native American-English speakers or

learned English when they were young. All participants had normal

or corrected-to-normal vision and reported normal hearing.

First experiment. Auditory (A) and auditory-visual (AV)

stimuli were the same as in [15]. 546 Simple monosyllabic English

words were selected from a well-characterized normed set based

on their written-word frequency [19]. These high-frequency

words, uttered in isolation by a female American-English native

speaker, were recorded as audio and video, and reproduced to

subjects as audio alone (A) or as audio and video together (AV).

Stationary acoustic noise with a 1/f-spectrum and a frequency

range of 3 Hz to 16 kHz was presented, extending 1.5 s before

and 1 s after the speech sound. Video was presented on a 17-inch

LCD monitor with the face extending a visual angle of

approximately 15u. Speech sound was played back from a

centrally located loudspeaker, and the noise from two lateral

speakers, all at 50 cm distance from the subject (see Figure 1). This

configuration was originally chosen to allow for spatial auditory

cues that may interact with visual cues. The A condition included

a stationary visual stimulus to indicate to the subject the onset and

offset of the speech sound (face with mouth closed or mouth open).

This controlled for a bias in attention, which may otherwise favor

the AV condition, since the video may give the subject a clue as to

when to attend to the auditory stimulus (this contrasts the

experiment in [15] which did not indicate speech onset in the A

condition). Speech was presented at a constant 50 dB sound

pressure level and noise at levels between 50 dB and 74 dB in steps

of 4 dB, resulting in an SNR ranging from 0 dB to 224 dB. To

generate the modified video sequence (V* stimulus, AV*

condition) we used a video synthesis program that can generate

a face which is similar in appearance to a given natural face [20].

We used natural faces instead of artificial visual stimuli as they are

known to generate the largest auditory-visual enhancements in

speech recognition [21]. The method used features extracted from

the clean audio signal to generate articulations of the mouth, eyes,

brows, and outline of the face. From these, realistic video frames

were generated (for details, see the Supporting Information and

Figure S1). Here we used the power of the audio (in time frames of

40 ms) as the only feature to generate the video. Hence, the V*

stimulus can only represent visual information associated with the

overall intensity fluctuations of the signal in time. The video

cannot reflect any information associated with the detailed spectral

content of the original speech signal. It may, at most, convey broad

phonetic characterizations such as vowel versus consonant (vowels

tend to have higher energy content).In each of the 3 conditions (A,

AV, AV*), 26 words were presented at each of 7 SNR levels. Each

word was presented only once, resulting in a total of 546 words

(266763). Stimuli were identical for all subjects to reduce cross-

subject variability.

Second experiment. The second experiment, which

included incongruent stimuli, included four conditions: visual-

only (V), auditory-only (A), congruent auditory-visual (A = V), and

incongruent auditory-visual (A?V). Auditory and visual stimuli

were selected from the same set of words as above. The A?V

condition presented the sound of one word while showing a face

uttering a different but similar-sounding word. To select similar-

sounding words, we computed the correlations of spectrograms of

all word pairs within a set of 700 words and selected pairs with the

highest correlation. As before, the 700 words were selected as the

most frequent monosyllabic words, following [19]. Words with

homophones were excluded. Words were presented only once,

either as video or as audio. The V condition was presented with no

sound, while the A condition was presented with a static visual

stimulus as above, to control for attention. The noise had the same

timing and spectral characteristics as above, but SNR was now

adjusted in the range of 228 dB to 28 dB by varying the level of

the speech signal and keeping the noise at a constant 50 dB (the

intention was to help subjects maintain an equal level of effort

despite the low SNR in some of the trials). Fourteen subjects were

also tested with pure auditory noise (2‘ dB). No significant

behavioral difference was found between 228 dB and this pure-

noise condition, suggesting that at this lowest noise level, speech is

fully masked by the noise. The 228 dB condition was included to

capture the predicted increase of visual reports at low SNR.

Higher SNR conditions were omitted to limit the total duration of

the experiment. To prevent subjects from noticing that stimuli

were incongruent, the A?V condition was tested only up to

212 dB.

Figure 1. Experimental set-up and timing of audio-visual stimuli.
doi:10.1371/journal.pone.0004638.g001
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Each of the 4 conditions (A, V, A = V, A?V) included 40 trials

at each SNR level. In the A?V condition, this made for a total of

400 words used (5 SNR levels640 trials62 words per trial). There

were no repetitions among these 400 words. For the 6 SNR levels

of the A and the A = V conditions, as well as the V-alone

condition, a total of 520 words were drawn from the same pool

(662+1 = 13 combinations of condition and SNR level; 40 trials

each; 13640 = 520). There were no repetitions among these 520

words, but overlap with the 400 words in the A?V condition

could not be avoided. Stimuli were identical for all subjects to

reduce cross-subject variability.

Procedures. Except for varying SNR levels, the noise was

identical in all conditions in order to reduce variability, while the

presentation of all stimuli was fully randomized to control for

potential learning effects. A brief instruction was shown to

participants before the experiment. Participants were required to

write down the words they identified, and asked to note when they

did not recognize a word. Subjects had no time constraints to give

their response, but answered in 5–10 seconds, making each

experiment last approximately 90 minutes. For classification as

correct, we insisted on correct spelling. After the experiment,

participants were presented with the full list of words used in the

experiment and asked to indicate any words they did not know.

These words were then excluded from the analysis and no longer

presented to subsequent subjects.

Model
Background: words as points in a high-dimensional

feature space. Traditionally, words are conceived of as a

sequence of phonemes, with phonemes representing the

elementary carriers of word identity. Classic phonetic features

are grouped in categories such as place of articulation, voicing,

and manner. These phonetic features have been derived

empirically focusing on auditory stimuli. However, the definition

of relevant phonemes depends also on the type of stimulus [22,23].

For instance in speech-reading, the visual stimulus may not be

sufficient to disambiguate among distinct phonemes (e.g. in words

such as ‘pad, ‘bat’, and ‘mat’, the phonemes /p/, /b/, and /m/

are difficult to disambiguate visually and may be considered the

same ‘viseme’ [24]). Similarly, an auditory stimulus distorted by

noise, or degraded due to hearing loss will no longer communicate

some phonetic features [25,26]. The specific phonetic

identification depends therefore on the specifics of the audio-

visual speech stimulus. Given this dependence on the stimulus,

there has been an effort to automatically extract relevant auditory

and visual features directly from the stimulus in conjunction with

behavioral experiments on phoneme identification [22,27]. These

experiments, and the associated computational and modeling

approaches, by and large have converged on the notion that words

can be represented by a conjunction of features, with each

phoneme in a word contributing a set of features. This feature

space can be generally thought of as a topographic space with well-

defined neighborhood relationships [28]. For instance, words that

are ‘‘close by’’ are more likely to be confused when the stimulus is

distorted by noise. In this feature space, words are not evenly

distributed, and words that are clustered in high-density regions

are harder to recognize [28,29]. The conjunction of phonetic

features of several phonemes can make this space rather high-

dimensional. However, not all phonetic combinations occur

equally likely, and even fewer combinations represent actual

words in a lexicon [30]. Such phonotactic and lexical constraints

allow accurate word identification even in a reduced phonetic

representation [23,29,31]. Essentially, in the high-dimensional

joint feature space, many areas have a zero probability of

containing a lexically correct word. Empirical evidence also

suggests that high-frequency words are easier to recognize,

implying that the prior probability of a given word plays a role

in correct identification [28].

Bayes-optimal word recognition in n-dimensional

space. We present a first-principles model for multisensory

word recognition that captures the main concepts of a stimulus

neighborhood in high-dimensional feature space, where the

reliability of the signal affects the size of the neighborhood and

lexical information is represented by the distribution of words.

Let us assume that there are n features and that the observer’s

vocabulary can be represented by points in this n-dimensional space,

which we will call word prototypes. Different speakers, different

articulation, and noise will induce variability in the perceived

stimulus for a given word. We assume that these noisy examplars of

the word are represented in the observer’s brain within some

neighborhood of the prototype. We characterize their distribution by

a n-dimensional normal distribution centered at the prototype. An

important distinction from previous models is that we do not

differentiate explicitly between visual and auditory features. Both the

auditory and visual stimulus contribute to the observer’s estimate for

each feature dimension. The variance associated with these estimates

may differ for the auditory versus the visual stimulus. In this view, a

feature that is primarily auditory is characterized by a smaller

variance afforded by the auditory than by the visual stimulus.

Moreover, we will allow for correlated features.

The process of word identification is modeled as follows (for

details, see the Supporting Information). First, we define the

generative model, also called noise model. For a given vocabulary

size N, word prototypes are denoted by vectors wi (i = 1..N) and are

randomly drawn from a n-dimensional normal distribution. On

each trial, a test word wtest is presented to the subject and gives rise

to noise-perturbed exemplars mA and mV in the subject’s brain.

These are sampled from Gaussian distributions with mean at wtest

and covariance matrices SA and SV , respectively (which do not

depend on wtest). We model the overall level of reliability of the

stimuli by non-negative scalars, rA for auditory and rV for visual.

These parameters are usually under experimental control – for

example, increasing the auditory signal-to-noise ratio leads to an

increase in rA. The covariance matrices SA and SV are scaled by

factors of 1
r2

A

and 1
r2

V

, respectively. The equivalent of such a scaling

in one dimension would be that reliability is inversely proportional

to the standard deviation of the noise distribution, and therefore

closely related to the d ’ measure.

Having specified the generative model, we can now formalize

the Bayesian inference process which ‘‘inverts’’ it. To the subject’s

nervous system, the exemplars mA and mV are known, while wtest is

not; for the experimenter, the reverse holds. On each multisensory

trial, mA and mV provide the brain with a likelihood function

LAV wð Þ~p mA,mV wjð Þ, i.e. a function over (not necessarily

lexically correct) utterances w, indicating how probable it was

that each has given rise to mA and mV . Assuming that auditory and

visual noise are independent, this likelihood function is the product

of both unisensory likelihood functions, i.e. p mA,mV wjð Þ~
p mA wjð Þp mV wjð Þ (see Figure 2a). The unisensory likelihood

functions are defined by the noise model outlined above, and

consequently, the multisensory likelihood function will also be an

n-dimensional Gaussian, with mean at mAV~ S{1
A zS{1

V

� �{1

S{1
A mAzS{1

V mV

� �
and covariance matrix SAV~

S{1
A zS{1

V

� �{1
. The utterance mAV is the multisensory maxi-

mum-likelihood estimate. The well-known one-dimensional

analogs of these expressions are mAV ~
mAs{2

A zmV s{2
V

s{2
A zs{2

V
and s2

AV ~
1

s{2
A zs{2

V

(e.g. [17]). The former means that the
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multisensory likelihood function will have its maximum closest to

the peak of the likelihood function corresponding to the most

reliable modality; the linear weights of both modalities are

determined by their reliabilities. (Interestingly, mAV does not

necessarily lie on the line connecting mA and mV .) The latter

indicates that the multisensory likelihood function is narrower than

both unisensory likelihood functions, indicating the benefit of

combining both modalities.

Still on a single trial, we account for uneven word frequencies by

multiplying the likelihood values of all utterances with prior

probabilities. These are taken to be zero for non-lexical utterances

and are assigned according to an exponential distribution for

lexical words, p wið Þ!e{ i
l, with a decay constant l~250. Previous

studies do not provide strong guidance on how to choose this

prior. It is most likely a combination of frequency knowledge

acquired before and during the experiment. Good fits to the data

are possible with a variety of priors we have tried. This issue

deserves further attention. Posterior probabilities are computed for

all words in the vocabulary through p w mA,mVjð Þ!p

mA wjð Þp mV wjð Þp wð Þ. According to the model, the observer then

reports the word with maximum posterior probability (for details,

see Supporting Information). Trials for which the reported word

was equal to the test word were counted as correct. The

‘‘correctness regions’’ for each word typically have heterogeneous

and irregular boundaries.

In the generation of the word prototypes as well as the

generation of noisy word exemplars we sampled from normal

distributions. The k-dimensional correlation structure in the

corresponding covariance matrices was generated by adding to

the diagonal matrix a product, XXT, of a n6k-dimensional matrix

X with normally distributed coefficients and an adjustable scale.

Across many trials, the maximum-likelihood estimates (either

auditory, visual, or auditory-visual) of a given word form a

probability distribution, as illustrated in Figure 2b. It turns out that

when all distributions are Gaussian, the covariance matrix of this

distribution is equal to that of a corresponding single-trial likelihood

function (A, V, or AV). Therefore, estimation precision is governed

by stimulus reliability, and many papers only discuss the estimate

distributions. However, it is important to keep in mind that a full

likelihood function is encoded on a single trial. This is particularly

important when the prior distribution is not uniform.

Fitting the models to the behavioral data. To relate the

Bayesian model to the behavioral data we have to identify the

relationship between auditory reliability rA and SNR. As SNR

increases, the reliability of the auditory signal increases

monotonically. Here, we simply assume a rectified linear

relationship between SNR measured in dB (a logarithmic scale)

and reliability: rA~ a SNRzbð Þ½ �z, where a and b are constants

and [?]+ sets negative arguments to zero. The data is fit by first

optimizing a and b in the A condition. The AV and AV*

conditions are then fit by adjusting visual reliability rV separately

for each. Throughout this paper, we plot performance as a

function of SNR when behavioral data are fitted, and as a function

of rA otherwise (as this is more general).

The percentage of correct identification was computed by

testing over a large number of test words. Behavioral performance

was fit to the model performance by using 1000 test words per

data point (not to be confused with the number of vocabulary

words N). The final performance curves according to the model

were computed with 8000 test words per data point, to produce

smoother traces.

Results

Summary of results
We first present the results of our behavioral experiment,

showing that open-set word identification in noise does not follow

inverse effectiveness (Figure 3). In both the AV and the AV*

Figure 2. Bayesian model of auditory-visual word recognition. a. Inference process on a single multisensory trial. Word prototypes are points
in a high-dimensional space (of which two dimensions are shown). The presented word (in red) gives rise to an auditory (mA) and a visual (mV)
observation (which are the respective unisensory estimates if only one modality is presented). Based on these, the brain constructs likelihood
functions over utterances w, indicated by muted-colored discs. The diameter of a disc is proportional to the standard deviation of the Gaussian. The
auditory-visual likelihood is the product of the unisensory likelihoods and is centered at mAV (see text), which is the multisensory estimate on this trial.
b. Across many repetitions of the test word, the estimates will form a distribution centered at the test word. The estimate distributions are shown as
bright-colored discs for the auditory-alone (A), visual-alone (V), and auditory-visual (AV) conditions. Since the distributions ‘‘cover’’ many words, errors
will be made. Note the different interpretations of the discs in a and b: single-trial likelihood functions, versus estimate distributions across many
trials. c. Side view of the estimate distributions in b. The AV estimate distribution is sharper than both the A and the V distribution, leading to fewer
errors. This indicates the advantage conferred by multisensory integration.
doi:10.1371/journal.pone.0004638.g002
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condition, the enhancement due to additional visual information is

maximal not at the highest but at an intermediate or low noise

level.

We then present results of the model that conceives of speech

recognition as a Bayesian cue combination process. This model

implements the key statistical properties of phonetic features and

lexical information that are known to affects human speech

recognition performance. The computations show that Bayesian

inference produces multisensory enhancements that do not decline

monotonically with SNR but have a maximum at intermediate

SNR. The resulting performance curves are shown to fit the

present behavioral data with high accuracy (Figure 4a). We next

modeled the auditory-visual enhancement when visual reliability is

reduced and find that the model effects are consistent with the

behavioral results of the impoverished visual condition AV*

(Figures 4b and 5a). We show that words in higher-density regions

are harder to recognize (Figure 4c), consistent with earlier findings.

We also show that when vocabulary size is reduced, the

enhancements resemble earlier behavioral data on speech

perception in noise, which used checklists instead of an open

word set (Figure 5b).

We then provide evidence that these numerical results are a robust

property of the model and do not depend on specific parameter

choices. In particular, we show that the predicted performance

curves show the same trends when we compute rigorous analytic

expressions for a strongly simplified high-dimensional model

(Figure 6). Moreover, we show rigorously that in 1 and 2 dimensions,

optimal cue integration does follow an inverse-effectiveness rule.

This suggests that high dimensionality of the feature space is both

necessary and sufficient for the results to hold.

Figure 3. Behavioral performance in open-set word recognition. Data consisted of auditory-alone performance (blue) and auditory-visual
performance (green). The multisensory enhancement (red) is the difference between auditory-visual and auditory-alone performance. Error bars
indicate s.e.m. a: Full visual information (AV). b: Impoverished visual information (AV*). In both cases, maximum enhancement occurs at intermediate
values of auditory SNR.
doi:10.1371/journal.pone.0004638.g003

Figure 4. A Bayesian model of speech perception can describe human identification performance. A vocabulary of size N = 2000 was
used. Words were distributed in an irregular manner in a space of dimension n = 40. For details of the fits, see the Supplemental Material. a: Data
(symbols) and model fits (lines) for A-alone and AV conditions. The red line is the multisensory enhancement obtained from the model. b: Same for
impoverished visual information (AV*). c: Words in high-density regions are harder to recognize. In the simulation in a, words were categorized
according to their mean distance to other words. When the mean distance is large (sparse, solid lines), recognition performance in both A-alone and
AV conditions is higher than when the mean distance is small (dense, dashed lines).
doi:10.1371/journal.pone.0004638.g004

Bayesian Speech Recognition
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The modeling efforts conclude with predictions for the case of

cue conflict (incongruence), i.e. visual and auditory stimuli that do

not represent the same word (Figure 7a). Finally, we present results

of a subsequent behavioral experiment which confirm these

theoretical predictions (Figure 7b), lending further support to the

hypothesis that human speech identification follows Bayes-optimal

Figure 5. Predictions of the Bayesian model for auditory-visual enhancement as a function of auditory SNR, for various values of: a:
visual reliability (from 0.05 to 0.95 in steps of 0.10); b: vocabulary size. For both plots, all other parameters were taken from the fit in Figure 4. See
Results for interpretation.
doi:10.1371/journal.pone.0004638.g005

Figure 6. Optimal cue combination in multiple dimensions according to a simple analytical model. a. In this simplified model, word
prototypes (dots) lie on a rectangular grid, here shown in two dimensions. The green blob indicates an example estimate distribution (compare
Fig. 2b). The dashed lines enclose the correctness region when the central word is presented. b and c. The model was fitted to the data in the AV
condition (b) and the AV* condition (c). Data are shown as symbols, lines are model fits. Colors are as in Fig. 3. d. The same model in 1 dimension, but
now allowing word prototypes to be unequally spaced. The green curve is an estimate distribution. The vertical dashed lines are the boundaries of
the decision regions. The shaded area corresponds to correct responses when the presented stimulus is the one marked in red. e. Typical
identification performance in 1 dimension, for the A (blue) and AV (green) conditions. The multisensory enhancement (red) decreases monotonically
with auditory reliability. This is an instance of inverse effectiveness. For details, see the Supporting Information.
doi:10.1371/journal.pone.0004638.g006
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cue combination. The congruent trials in this experiment show

unambiguously that multisensory integration occurs at all SNR

levels.

Behavioral performance in an open-set word
identification task does not follow inverse effectiveness

Monosyllabic words were presented in an auditory (A) and

auditory-visual (AV) condition under varying noise levels. Subjects

responded in writing which word they identified. In addition to the

original video, a modified video sequence was generated for each

word and presented together with the corresponding original

audio (AV*). The goal of this modified video sequence was to

represent only temporal information, but not spectral information.

The rates of correct identification are shown in Figure 3 and

confirm previous literature on the benefits of auditory-visual

speech in noise.

In the AV condition (Figure 3a), identification performance at

all noise levels improves by adding the visual information, with the

highest gains occurring at intermediate noise levels. The

enhancements are large and statistically significant by any

measure. When contrasting these results with the study by Ross

et al. as well as our second experiment below, one can see that the

specifics of the performance gains depend on the experimental

protocol (see Figure S2). However, in all instances, the maximum

gain for the AV condition is obtained at a SNR of approximately

212 dB.

The enhancements in the AV* condition (Figure 3b) are smaller

and were tested for significance as follows. A repeated-measures 2-

way ANOVA shows a significant effect of the stimulus condition

(AV* vs A) with F(1,32) = 80.3 and a significant effect of SNR with

F(6,224) = 524. This means that adding the V* visual stimulus

improves performance significantly with respect to the A-only

condition. It also means, trivially, that performance varies with

SNR. The ANOVA analysis shows a significant interaction

between the two factors (F(6,224) = 10.9), indicating that enhance-

ment across the two conditions changes with SNR. (Compare this

to the effect sizes in the AV vs A conditions, where we find

F(1,224) = 510 for the difference between conditions,

F(6,224) = 495 for the effect of SNR, and F(6,224) = 25.0 for the

interaction between the two factors.) A subsequent sequential

paired t-test on each SNR (with Holms’ correction for multiple

comparisons) shows that there is an enhancement at high (less

negative) SNR (for 28 dB or higher) and no significant

enhancement below 212 dB. Put differently, for the AV*

condition, a minimum auditory SNR is required before the

additional visual stimulus can aid word identification. This

indicates that performance enhancements follow the opposite

trend from what one would expect for inverse effectiveness.

Significance in all these tests falls at a p-value of 0.001 or less,

except for the gain due to V* at 212 dB, for which p,0.01.

Bayes-optimal cue combination in high dimensions
predicts largest multisensory enhancement at
intermediate noise levels

Speech recognition is a process in which perceived phonetic

information is compared to a mental lexicon. Here we use a model

that is broadly consistent with results from linguistics which

describe how phonetic features are be integrated with lexical

information (see Methods). Briefly, the model regards word

recognition as a Bayesian inference process in which vocabulary

words are prototypes defined by a conjunction of phonetic

features. A specific word stimulus corresponds to a point in this

space and different instantiations of the same word are distributed

in some proximity of the mean prototype (see Figure 2a). To

mimic the varying similarity or distinctiveness of vocabulary words

the prototypes were chosen to be unevenly distributed in this

feature space, with close-by prototypes representing similar words.

Each prototype word is assigned a prior likelihood to be observed

thus capturing the uneven frequency of occurrence of different

words in natural speech. In addition, we allow features to be

correlated, which relaxes restrictions of previous models that often

implicitly assume phonemes to be independent [28,32].

Figure 7. Effect of an auditory word on reports of an incongruent visual word. a. Illustration of the Bayesian prediction. An experiment was
simulated in which pairs of slightly incongruent auditory and visual words are presented. On each trial, the observer integrates the signals and reports
a single word. Frequencies of reporting the auditory word (cyan), the visual word (magenta), and other words (brown) are shown as a function of
auditory reliability. As auditory reliability increases, the percentage reports of the visual word reaches a maximum before it eventually decreases. This
is a small but significant effect. Note that the interpretation of both curves is completely different from that of Figures 3–4 (here, the only condition is
multisensory, and there is no notion of correctness). A vocabulary of size N = 2000 and dimension n = 30 were used, and visual reliability was fixed at
rV = 0.5. Robustness of the effect across dimensions and vocabulary sizes is demonstrated in Figure S5. b. Experimental test of the Bayesian
prediction. The percentage reports of the visual word exhibits a maximum as a function of SNR. The curves in a have not been fitted to those in b. c.
Reports of the visual word as a percentage of the total reports of either the auditory or the visual word, computed from the data shown in b. As
expected, this declines monotonically with SNR.
doi:10.1371/journal.pone.0004638.g007
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We computed identification performance simulating auditory-

only and auditory-visual stimulation for various values of auditory

and visual reliability. The results of the model are shown in

Figure 4 with suitably chosen parameters. To compare the results

to behavioral data, they are plotted here as a function of auditory

SNR. A rectified-linear relation between auditory reliability and

SNR was assumed, with parameters determined by fitting the

performance curve to the auditory-alone conditions. As SNR is

increased, the model shows that performance reaches a maximum

and ultimately decreases. Indeed, the model replicates the

behavioral data with high accuracy (R2~0:96; 0:90; 0:89 for

conditions A, AV, and AV* respectively). For this example, we

chose N = 2000 words as an estimate of the number of uniquely

spoken monosyllabic words that may be known by our subject

population (John Lawler, personal communication), n~40
dimensions, and uncorrelated features. This left only 4 free

parameters: 2 for the relation between auditory SNR and

reliability, and 2 for the visual reliabilities in the AV and AV*

conditions. Dimensionalities between 20 and 50 and vocabulary

sizes of 800–3000 words give equally good results (see Supporting

Figure S3a). This makes it impossible to reliably determine the

parameter values from these data, but it speaks in favor of the

generality of the qualitative conclusion that the behavioral data

can be explained by a Bayesian model as long as dimension and

vocabulary size are sufficiently high. Also note that a small

vocabulary size or a low feature space dimension cannot account

for the data. Finally, we tested several cases of nonzero correlations

of various ranks between features in the auditory or visual noise;

these correlations had little or no effect on the reported

performance curves.

Words in higher-density regions are harder to recognize
In earlier work using related models, it was found that words

with more neighbors are harder to recognize [28,29]. In order to

confirm that this is the case in the Bayesian model, we divided the

vocabulary into two subsets according to the density of their

neighbors. In the simulation used to fit the behavioral data

(Figures 4a and 4b), each word has a roughly normal distribution

of distances to other words. However, the mean of this distribution

varies across words, with some words being in high-density and

others in low-density regions. We defined the subsets by whether

the mean distance of a word to other words is larger or smaller

than the median mean distance. We computed performance

separately for each subset and found that indeed, for both A and

AV conditions, performance is better on words with a higher mean

distance to other words (see Figure 4c).

Largest multisensory enhancement shifts to higher SNR
as visual reliability decreases

The simulations for the AV and AV* conditions shown in

Figures 4a and 4b are identical except for the values of visual

reliability, with rV~0:559 and rV�~0:214, respectively. These

values are consistent with the fact that the V* stimulus provides

less reliable information. The auditory reliability at which

maximum performance gain is attained depends on the reliability

of the secondary modality. Figure 5a explores this behavior as a

function of visual reliability. It shows that the maximum gain shifts

to higher SNR as the reliability of the secondary modality

increases. When the secondary modality is extremely uninforma-

tive, as in the AV* condition, the enhancement is very low at all

SNR values and exhibits a maximum at high SNR. Therefore, we

predict that subjects with an impaired ability to extract visual

information will show their greatest multisensory enhancement at

higher SNR than normal-vision controls.

Largest multisensory enhancement shifts to higher SNR
as vocabulary size increases

The Bayesian model explains why the maximum multisensory

enhancement occurs at intermediate values of SNR. This raises

the question what was different in earlier behavioral experiments

that found the largest enhancement at the lowest values of SNR

[8,9,33]. It was hypothesized before [15] that the number of words

plays a crucial role, since in earlier studies the possible responses

were restricted to a relatively short checklist. Therefore we

checked in the numerical model the effect of vocabulary size on

the multisensory enhancement function (see Figure 5b). Note that

the vocabulary size is not the number of test words (which is kept

constant), but the number of all monosyllabic words that the

subject may consider in determining her response. All parameters

were fixed at the values used in obtaining the fits of Figures 4a and

4b, except for the number of words in the vocabulary. We find that

multisensory enhancement peaks at lower SNR as fewer words are

considered. Therefore, with the vocabulary sizes used in earlier

studies (e.g. at most 256 words in [8]), it is not surprising that

inverse effectiveness was observed. When the maximum occurs at

low SNR, but even lower levels of SNR are not used in the

experiment, enhancement can appear to obey inverse effectiveness

while in fact this is only a consequence of the limited SNR range

used. The dependence of auditory-alone performance on set size is

interesting in its own right [34] and warrants further attention in

the context of the Bayesian model.

Maximum enhancement at intermediate SNR is a generic
property of Bayes-optimal cue combination in higher
dimensions

The numerical modeling results replicate the behavioral data

accurately, but does this depend critically on the specific modeling

choices or the number of model parameters? Surprisingly, if we

drop all the flexibility of the numerical model, and instead assume

– unrealistically – that vocabulary words are uniformly distributed

on a regular lattice of n independent features (see Figure 6a) we

find that the main conclusions of the numerical model are

preserved. This simplified case can be treated analytically. In

Supporting Figures S4a–d, we show examples of the multisensory

enhancement computed analytically, for different values of the

dimension n and the visual reliability rV . The curves replicate the

observation that for higher dimensions the maximum performance

gain is at intermediate values of auditory reliability (a mathemat-

ical proof is in the Supporting Information). It also confirms the

numerical model result that higher auditory reliabilities are

required to obtain maximal performance gain if the visual

reliability is lower. Indeed, this simplified analytic model can

explain the behavioral data with equally high accuracy

(R2~0:97; 0:99; 0:97 for A, AV, and AV* respectively;

Figures 6b–c). Moreover, in the analytical model, it can be proven

(see Supporting Information) that in 1 and 2 dimensions,

maximum performance gain occurs at the lowest value of SNR,

consistent with inverse effectiveness (see Figures 6d–e). In 1

dimension, the proof of this statement does not even require equal

spacing of possible choices.

Predictions for behavioral performance in multisensory
cue combination

The value of the present model does not lie merely in explaining

existing data, but also in its generality, which permits to make

predictions about yet unobserved behavior. In the previous

sections, we already discussed predictions regarding the location

of the largest multisensory enhancement upon changing the visual
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reliability or the vocabulary size. These conclusions are consistent

with known data but have not yet been fully experimentally tested.

Assuming Bayes-optimal behavior, we also predict that human

performance in multisensory classification tasks will violate inverse

effectiveness whenever the space of task-relevant features is high-

dimensional. This is not limited to speech. For example, if an

observer has to identify complex objects among an unconstrained

number of alternatives based on noisy visual and tactile cues, the

enhancement induced by the tactile cue should show a peak at

intermediate values of image noise.

Finally, it would be worthwhile to test our prediction of inverse

effectiveness for low-dimensional stimuli. Several behavioral

studies in cats [35] and humans ([36,37,38,39,40,41]; but see

[42]) have claimed inverse effectiveness, but on different measures

and in different conditions than the ones considered here.

Prediction for incongruent auditory-visual cues
So far, we have considered the case where visual speech is

congruent with auditory speech. Extensive literature exists on

human behavior in the presence of an incongruence, or cue

conflict, between auditory and visual speech. Massaro studied such

conflict stimuli in the context of the McGurk effect [43] and found

that it was well described by a Bayesian-type rule [5]. Many of

these experiments were conducted using a factorial design based

on nearby phoneme pairs such as /ba/-/da/. The present study

raises the question how human performance can be described

when the presented words are part of a much larger vocabulary, as

in the experiment discussed here. For nearby word pairs, such as

‘‘dear’’-‘‘tear’’ or ‘‘pay’’-‘‘bay’’, which in noise may be easily

confused, subjects may not realize the incongruence of the

auditory and visual stimuli. Hence, they will tend to merge the

cues and when that happens, we expect the model of Bayesian cue

integration to predict human behavior, without any need for

further assumptions. Since there are now two sources (an auditory

word and a visual word), there is no longer a notion of correctness,

but trials will fall into three groups: those on which the auditory

word is reported, those on which the visual word is reported, and

those on which a different word (distracter) is reported.

The Bayesian model predicts (as many other models would) that

when one keeps the visual noise level constant and increases

auditory SNR, the frequency of reports of the auditory word will

increase and the frequency of reports of other words will decrease.

However, surprisingly, it also predicts that the frequency of reports

of the visual word will first increase and then decrease, despite the

fact that the weight to vision decreases throughout. This follows

from a numerical simulation similar to those for the congruent

case, and is illustrated for specific parameter choices in Figure 7a.

This prediction holds across a wide range of vocabulary sizes and

dimensions (see Figure S5) and is confirmed by the analytical

model (see Supporting Information). It is a counterintuitive

prediction, as one might expect the reports of the visual word to

decrease monotonically as the weight to vision decreases. The

reason that this does not happen is because as auditory reliability

increases, two effects occur (Figure 8): 1) the mean of the

distribution of auditory-visual maximum-likelihood estimates shifts

towards the auditory word (this is what is meant by a decreasing

weight to vision); 2) the estimate distribution narrows, leading to

the squashing of a large distracter set. The interaction of both

effects determines the frequency of visual reports. At very low

SNR, the width of the distribution is large compared to the

distance between the auditory and the visual word. Therefore, the

stronger effect is the second one: the probability mass accumulates

in the neighborhood of both presented words, which benefits both,

since they are very close to each other. Only when the distribution

becomes narrow compared to the distance between the two words,

the enhancement will benefit the auditory word more exclusively.

All this assumes that visual reliability is relatively poor, so that

there is a strong tendency to integrate, even at the highest auditory

SNRs used.

Prediction on incongruent auditory-visual speech is
confirmed by behavioral experiment

We tested the prediction for incongruent stimuli directly using

the same set of auditory and visual words as in the first behavioral

experiment. We selected words pairs based on the similarity of

their spectrograms (see Methods). This resulted in pairs such as

‘‘cry-dry’’, ‘‘smack-snake’’ and ‘‘lost-rust’’. For the incongruent

stimuli, one of the two words is presented as audio and the other as

video. The prediction requires that subjects do not detect this

mismatch and instead fuse the auditory-visual information into a

common percept. To ensure this, we interleaved unisensory and

congruent multisensory trials and limited the SNR on incongruent

trials to at most 212 dB. Participants were informed of the

incongruent condition only after the experiment. None of the

subjects reported noticing an explicit mismatch between video and

audio. The percentage of reported words that match the visual or

auditory stimulus in the incongruent case (A?V) are shown in

Figure 7b. Evidently, the auditory reports increase with SNR, as

expected. The trend for the visual reports seems to follow the

prediction in Figure 7a. A one-way ANOVA comparing the

percentages of visual reports shows that the difference across SNR

is significant (p,0.02). Subsequent pairwise comparisons of the

different SNR conditions confirm that visual reports at 228 dB

and 212 dB are significantly lower than any of the intermediate

SNR values (p,0.01 with Bonferroni correction). A simple

quadratic fit to the data places the maximum at 21967 dB

(R2 = 0.2 when including data for individual subjects, p,0.005). As

sound quality improves further, subjects are more likely to report

correctly what they heard and thus the number of visual reports

decreases. This obvious expectation is indeed confirmed here at an

SNR above 219 dB. The surprising prediction of the model,

however, is that at the lowest SNR levels the trend should be

reversed: the number of correctly reported visual words increases

with increasing auditory reliability. This is indeed confirmed by

the behavioral performance for SNRs below 219 dB.

To verify that the increasing frequency of visual word reports is

due to the suppression of distracters and not to increasing weight

to vision, we plotted the frequency of visual word reports

conditioned on the observers reporting either the auditory or the

visual word (see Figure 7c). This ignores all distracters and only

considers visual relative to auditory word reports. As expected, this

shows a monotonic decline with auditory SNR.

Audio-visual integration occurred at all SNR levels
In the AV condition of the first experiment, identification

performance at all noise levels improves by adding visual

information. But at the same time, the AV performance is

significantly greater than pure lip-reading performance at all SNR

levels (p,0.01, corrected for multiple comparisons) if we assume the

7% measured for the visual-only condition on this data by Ross et al.

[15]. To confirm this result, the second experiment measured the

visual-only condition explicitly, resulting in a recognition perfor-

mance of 5.361.5% (see Figure S2b). A post-hoc paired t-test shows

significant improvement over the V condition for the AV condition

down to 228 dB (p,0.0001). Hence, in these experiments, even

marginal auditory information seems to aid in lip-reading (compare

[44], where voice pitch was used as an auditory cue) and

multisensory integration is occurring at all SNR levels.
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Discussion

A case for Bayesian optimality
The benefits of speech-reading are well-documented (for a

review see [1]) and have been described with computational

models [29,32,45]. The notion that words form a neighborhood

relationship in some high-dimensional features space was captured

also by Luce’s Neighborhood Activation Model (NAM) [28,29].

The model uses performance measures on individual phonemes to

estimate the performance of identifying full words. Similar to the

present work, it incorporates word frequency (prior likelihood) and

expresses lexical information as permissible points in the joint

feature space.

However, the present study is the first that puts the observed

gains in the context of optimal inference. This work was based on

the recent finding that maximum auditory-visual gain is obtained

at intermediate instead of low auditory SNR levels [15], which

contradicts the well-known principle of inverse effectiveness. We

showed that even purely temporal visual information can improve

speech understanding. This was remarkable considering that this

impoverished information, by itself, did not allow any identifica-

tion. Only when combined with a minimum of auditory signal was

identification improved and the benefits increase with increasing

SNR, opposite to what one would expect from inverse effective-

ness.

We then presented a simple, yet rigorous model in which

auditory-visual speech perception was treated as an inference

process with noisy cues. We took into account the complexity of

speech by conceptualizing words as points in a multidimensional

space. The behavioral data in both conditions could be fitted very

well, and in particular, the largest multisensory enhancement

occurred at intermediate auditory SNR. All else being equal, a

decrease in the reliability of the secondary modality or an increase

in the number of alternatives causes multisensory enhancement to

stray further from inverse effectiveness. In spite of this breakdown,

performance is completely consistent with a Bayesian model of cue

integration.

Numerous studies have shown that humans are nearly Bayes-

optimal in combining simple perceptual cues, even in the presence of

a small conflict between the cues [16,17,18,46,47,48,49,50,51,52],

sensorimotor integration [53,54], and other forms of cue combina-

tion [55,56,57,58,59,60]. This suggests that in multisensory

integration, Bayesian optimality is a very general principle, much

more so than inverse effectiveness. Moreover, it is extremely difficult

to attach any intuition to inverse effectiveness (or lack thereof), while

Bayesian optimality is naturally interpreted in terms of the

sharpening of probability distributions (see Figure 2).

The present model of Bayes-optimal cue combination was used

to make a series of predictions. The prediction on the perception

of incongruent auditory-visual stimuli was indeed confirmed by a

subsequent experiment. This demonstrates the power of the model

not only to explain existing results but to generalize to new

situations.

Benefits of temporal information
Previous behavioral experiments show that many forms of

synchronous video can improve auditory perception: simultaneous

video can reduce detection thresholds of spoken sentences in noise

[61] and just seeing a speaker’s head movement can improve word

Figure 8. A large distracter set gets squashed. This figure
illustrates the Bayesian model for integrating slightly incongruent
auditory-visual stimuli. Dots represent word prototypes. The blue and
orange dots represent the auditory and visually presented words,
respectively. Each disc represents a Gaussian maximum-likelihood
estimate distribution (A, V, or AV); its radius is proportional to the
standard deviation of the Gaussian. a–c differ in auditory reliability but
not in visual reliability. In a, auditory reliability is zero, therefore the V
and AV distributions are identical. As auditory reliability increases, the
AV distribution sharpens (thereby excluding more and more distractors)
and shifts more towards the auditory word. These two effects together
initially benefit both the auditory and the visual word, since the visual
word is close to the auditory word and enjoys some of the increased
probability mass (compare a and b). Eventually, the benefit will go
more exclusively to the auditory word (compare b and c). This explains
why in Figure 7b the percentage of reports of the visual word in the AV

condition first increases and then ultimately decreases. Note that the
auditory and the visual word do not have to be nearest neighbors.
doi:10.1371/journal.pone.0004638.g008
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identification [62]. Even more strikingly, syllable identification can

be improved when an identical visual stimulus is shown for

different syllables [63]. The present study uses only temporal visual

information and explains the enhancement effects using a

probabilistic model. At a mechanistic level, we propose to attribute

this set of findings to the coherent modulation of the auditory

signal with facial motion. Grant and others have suggested that

hearing may be improved by allowing subjects to confirm whether

peaks and valleys in a noisy spectrogram belong either to

foreground speech (peaks) or background noise (valleys). Coher-

ence masking protection (CMP) and co-modulation masking

release (CMR) are similar phenomena purely within the auditory

modality. In the case of CMP the target signal is co-modulated

across different frequency bands [64]; in the case of CMR the

noise is co-modulated [65]. In either case, the co-modulation may

facilitate the grouping of information as belonging to the

foreground signal or background noise. For this reason the

enhancement observed here with a comodulated visual stimulus

may be considered a form of bimodal coherence masking

protection [66].

Comparison with other models
The model presented here has similarities to earlier probabilistic

models of multisensory speech perception. In studies on the

McGurk effect [43] by Massaro and colleagues (for a review, see

[5]), participants had to identify a spoken syllable as, for instance,

/ba/ or /da/, while both auditory and visual speech were varied

on a continuum between /ba/ and /da/. The behavioral data

were described well by the so-called fuzzy-logical model of speech

perception (FLMP; [5,45,67]), in which the evidence for an

alternative is expressed as a probability and the multisensory

probability is obtained as the normalized product of the unisensory

probabilities. The FLMP is related to Bayesian inference [45], but

not equivalent to it (since it equates amounts of evidence to

response frequencies, which is unjustified in a Bayesian model).

Moreover, it was not known whether a Bayesian model can

describe data collected with a full vocabulary.

Another predecessor is Braida’s prelabeling model [32]. In this

model, stimuli (consonants) are represented in a multidimensional

space and ‘‘confusion matrices’’ reflect the uncertainty in

extracting syllable identity from auditory and visual cues.

Multisensory performance is computed by assuming that this

space is the Cartesian product of a visual and an auditory

subspace. This is different from the present model, which

computes optimal multisensory performance from the product of

two probability distributions in the same space. Moreover, the

data available at the time were only at a few SNRs and mostly

showed inverse effectiveness. The model proposed here most

naturally fits with an amodal (or supramodal) word space: neither

dimension of this space has a purely auditory or visual character,

but instead, each sensory modality contributes some evidence in

each of the feature dimensions. One possible way to think about

the word space might be as the space spanned by all parameters of

the production process of a word, such as the time courses of vocal

chord length, lip shape, and tongue position.

The notion that words form a neighborhood relationship in

some high-dimensional feature space was captured also by Luce’s

Neighborhood Activation Model (NAM) [28,29]. The model uses

performance measures on individual phonemes to estimate the

performance of identifying full words. Similar to the present work,

it incorporates word frequency (prior likelihood) and expresses

lexical information as permissible points in the joint feature space.

However, this model does not derive the probability of correct

identification from first principles as we do here, and is based

instead on a descriptive quantitative rule. Nevertheless, Auer has

used this model successfully to explain performance gains in audio-

visual word recognition [29]. He concludes that neighborhood

relationships derived numerically from behavioral confusion

matrixes can also be used to quantify audio-visual word

identification performance.

Outlook on causal inference
In the predictions above, we considered the case of integrating

similar, but incongruent words, i.e. the mismatch between

auditory and visual utterance is small. When more disparate word

pairs are allowed, integration is no longer guaranteed. In

perceptual tasks using simple stimuli, it was found that as the

discrepancy increases, human subjects believe less that the two

stimuli had a common source [68] and can make different

responses when asked for the auditory and the visual source

separately [48]. A similar effect can occur in speech perception

[69], as can be experienced when watching poorly dubbed movies.

Temporal discrepancy between auditory and visual speech signals

also affects one’s percept of unity [70]. We surmise that these

results can all be modeled by a Bayesian causal inference model, in

which the brain not only tries to infer stimulus identity (which

word was spoken) but also whether the auditory and visual

stimulus had a common source [52,71]. The present Bayesian

model could open the door to causal modeling in speech

perception.

Neural basis
The notion of inverse effectiveness was first used to describe

effects seen during intracranial recordings in multisensory neurons

of the superior colliculus (SC). In some of those neurons, an

additional visual input was most effective at driving the cell when

auditory information was poorest [14,35,72,73,74]. This pattern

has also been found in multisensory neurons in the neocortex of

animals [75,76] and has been inferred in brain imaging [77,78],

although imaging data of multisensory areas have to be interpreted

with great caution [79,80]. It is important to note that inverse

effectiveness on a neuronal level makes a statement about spike

counts observed in a subset of multisensory neurons. Behavioral

inverse effectiveness, however, is a statement about the percentage

of correct behavioral responses (it has also been applied to other

quantities, such as reaction times). Whether there is a connection

between these measures is not clear and to our knowledge there is

no rigorous work establishing such a link. In contrast, Bayes-

optimal cue integration can be linked to physiology in a rigorous

way, using the formalism of probabilistic population codes

[81,82,83,84]. The implications of this formalism for speech need

to be examined in further work.

The site of multisensory integration in speech is subject of

considerable debate. Common-format theories of auditory-visual

speech perception suggest that modality-specific stimulus infor-

mation is transformed into an amodal representation [6]. This

may occur by convergence of modality-specific information onto

multisensory neurons, for instance in the superior temporal gyrus/

sulcus [85,86]. This is a known convergence site for visual

articulation and auditory features, and has been shown to depend

on the comodulation of audiovisual stimuli [87]. Recent evidence

also points at early activity (,100 ms) in the supramarginal and

angular gyrus (SMG/AG) [88,89]. Besides behavioral and fMRI

data, there is ample evidence from encephalography for an early

influence of the visual modality on auditory speech processing.

Gamma-band activity (30 Hz or higher) associated with multi-

modal fusion is enhanced early after onset of congruent auditory-

visual speech stimuli (30–120 ms) [90]. This effect is only observed
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if stimuli are simultaneous, indicating that temporal information is

important for early fusion in speech. Furthermore, early auditory

evoked potentials (at 50 ms) in response to speech are modulated

by congruent visual stimuli [91,92]. Taken together, the

behavioral and neuro-imaging data support the notion that

auditory processing itself may be aided by comodulated visual

stimuli during speech perception. On the other hand, according to

modality-specific theories, auditory and visual speech information

is processed by modality-specific networks and then associated at a

post-labeling stage [6]. Indeed, neuroimaging studies of auditory-

visual speech perception implicate a variety of brain regions

beyond early processing stages [93]. In general, the way auditory-

visual signals are integrated remains unresolved. Further neuro-

physiological research is needed to constrain the possibilities on

how auditory-visual integration in speech is achieved.

Supporting Information

Figure S1 Method for generating modified video from clean

audio. For details, see section 1 of the Supporting Information.

Found at: doi:10.1371/journal.pone.0004638.s001 (0.56 MB TIF)

Figure S2 Variability between experiments. Auditory-visual

stimuli are congruent. Visual-only performance was measured in

two of these three studies. a. Identical to Figure 3a. b. Performance

on the congruent trials of the second experiment (the incongruent

trials were reported in Figure 7). c. Data from Ross et al., 2007

Found at: doi:10.1371/journal.pone.0004638.s002 (0.11 MB TIF)

Figure S3 a. Goodness of best fit (R2) of the numerical model to

the behavioral data (such as in Figure 4), for various values of

vocabulary size and dimension. Negative values were set to zero

for plotting purposes. In Figure 4, the parameter combination

N = 2000, n = 40 was used. b. Sum squared error (on a logarithmic

axis) of the analytical model as a function of dimension. The

minimum is at n = 55 (fits shown in Figures 6b–c), but any

sufficiently large number of dimensions allows for a good fit. A low

number of dimensions does not allow for a good description of the

data.

Found at: doi:10.1371/journal.pone.0004638.s003 (0.20 MB TIF)

Figure S4 Optimal word recognition according to the analytical

Bayesian model. a–d. Recognition performance as a function of

auditory reliability, rA, for various combinations of word space

dimension, n, and visual reliability, rV. Colors are as in Figure 3.

Figures 6b–c were generated using the same model. Note that

vocabulary size is infinite. Naturally, enhancements are larger

when visual reliability is larger. e. Auditory reliability at maximum

multisensory enhancement as a function of visual reliability, for

fixed dimension. Lowering visual reliability causes the maximum

to shift to higher values of auditory reliability. The same was

shown for the numerical model in Figure 5a. f. Auditory reliability

at maximum multisensory enhancement as a function of word

space dimension, for fixed visual reliability.

Found at: doi:10.1371/journal.pone.0004638.s004 (0.16 MB TIF)

Figure S5 Effect of an auditory word on reports of an

incongruent visual word, as predicted by the Bayesian model.

Experiments were simulated in which pairs of similar auditory and

visual words were presented. On each trial, the observer integrates

the uncertain cues and reports a single word. Frequencies of

reporting the auditory word (cyan) and the visual word (magenta)

are shown as a function of auditory reliability. Each plot

corresponds to a given combination of vocabulary size, N, and

word space dimension, n. Visual reliability was fixed at rV = 0.6.

The occurrence of a maximum in the visual reports at a nonzero

value of auditory reliability is consistent across vocabulary sizes

and dimensions.

Found at: doi:10.1371/journal.pone.0004638.s005 (0.19 MB TIF)

Supporting Information S1

Found at: doi:10.1371/journal.pone.0004638.s006 (0.21 MB

DOC)
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