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We review a simple yet versatile approach for the analysis of multichannel data, focusing in particular on brain
signals measured with EEG, MEG, ECoG, LFP or optical imaging. Sensors are combined linearly with weights
that are chosen to provide optimal signal-to-noise ratio. Signal and noise can be variably defined to match the
specific need, e.g. reproducibility over trials, frequency content, or differences between stimulus conditions.
We demonstrate how the method can be used to remove power line or cardiac interference, enhance
stimulus-evoked or stimulus-induced activity, isolate narrow-band cortical activity, and so on. The approach
involves decorrelating both the original and filtered data by joint diagonalization of their covariance matrices.
We trace its origins; offer an easy-to-understand explanation; review a range of applications; and chart failure
scenarios that might lead to misleading results, in particular due to overfitting. In addition to its flexibility and
effectiveness, a major appeal of the method is that it is easy to understand.
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Introduction

Data are increasingly multidimensional. The density of electrode
arrays increases exponentially (Stevenson and Kording, 2012), brain
imaging techniques such as EEG (electroencephalography), MEG
(magnetoencephalography) or fMRI (functional magnetic resonance
imaging) involve large numbers of electrodes, sensors, or voxels, and
optical imaging produces massively parallel time series of pixel values.
An array offers several advantages over a single electrode. The yield is
improved, as one is effectively running multiple experiments at the
same time. Knowledge of the electrode geometry helps map the topog-
raphy of brain sources. More importantly, the correlation structure helps
tease apart different sources of brain activity and noise. There is a press-
ing need for signal processing tools to exploit the rapidly increasing
number of sensors in electrophysiological data.

In some cases (e.g. intracellular recording) a sensor waveform might
correspond to a single neural source. In general, however, there is mixing
between sources and sensors, so that a sensor records a weighted sum of
sources (Fig. 1a), while each source contributes to several sensors. This
obviously complicates the interpretation of thewaveforms and the topog-
raphies. Component analysis designates a family of methods that form
linear combinations of the observed signals. Principal Component Analysis
(PCA) and Independent Component Analysis (ICA) (Hyvarinen, 2012;
Hyvärinen et al., 2009) are well known, but others such as beam-
forming, Current Source Density (CSD), Laplacian, or differential
montages used in EEG also fit this definition. Their purpose is usually to
improve the signal-to-noise ratio (SNR) of the activity of interest, by
canceling interference while preserving activity of interest. However
they differ by theweights applied, and this begs the question as towheth-
er there exists a “best” set of weights, and how to find it.

Fukunaga and Koontz showed in 1970 how to maximize the differ-
ence in the spectrum between two sets of data by joint diagonalization
of their auto-correlation matrices (Fukunaga and Koontz, 1970;
Fukunaga, 1972, 1990). The same two-step process for diagonalization
was later used to identify Common Spatial Patterns (CSP) in EEG — an
analysis technique now widely used in the Brain Computer Interface
(BCI) community (Blankertz et al., 2008; Dornhege et al., 2006; Koles
et al., 1990; Parra et al., 2005; Tangermann et al., 2011; Wang et al.,
1999). The idea reoccurs in various forms in a wide range of blind and
semi-blind source separation algorithms (Belouchrani et al., 1997;
Blaschke et al., 2006; Cichocki, 2004; Molgedey and Schuster, 1994;
Parra et al., 2005; Ramoser et al., 2000; Särelä and Valpola, 2005;
Ziehe and Müller, 1998). Here we show how the basic principle, joint
diagonalization, common to all these methods, in itself is a powerful
tool applicable to a wide range of needs. Properly formulated, it is also
very easy to understand. Our formulation follows that of Denoising
Source Separation (DSS) (Särelä and Valpola, 2005), more specifically
linear DSS. Our purpose is not to introduce a new method, but rather
to provide a new perspective to an existing approach, in order to high-
light its versatility, optimality and ease-of-use.

We will refer to the approach presented here generically as Joint
Decorrelation (JD), because it simultaneously decorrelates the data as
well as the data after filtering. This general approach subsumes prior
methods such as CSP, linear DSS and other component extraction tech-
niques. The result is to improve the signal-to-noise ratio (SNR) of the ac-
tivity of interest within the data —where signal and noise are specified
by a “biasfilter”. Depending on the choice of bias filter one can achieve a
variety of common objectives in electrophysiology and imaging: e.g. re-
producibility across trials, discrimination between conditions, reduction
of interference, and more. Compared to other component extraction
techniques, it is attractive because (a) it optimizes a specific objective,
(b) components are ordered so that there is noneed for post-hoc sorting
and selection, (c) a wide variety of applicable objectives makes the
method flexible, and (d) it is easy to implement and easy to understand.
With these nice features comes an enhanced risk of overfitting, that we
also stress below.

The paper is organized as follows. First, we give a simple and intui-
tive explanation of the approach. Next, we review a series of examples
to get a feeling for how it is applied and what can be achieved. Finally
we review a number of failure scenarios to emphasize its limits and
alert the user to potential pitfalls. Many useful details may be found in
the appendix.
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Fig. 1. Signal model and principle of the JD method. (a) Each component signal (right) is the weighted sum of sensor or electrode signals (center), themselves weighted sums of neural
sources (left). (b) Illustration of the JD procedure. A signal of interest (coded as color) is embedded with noise in sensor signals x1 and x2 (left). PCA decorrelates the data and finds the
direction of maximum power (second to left). Scaling renders the data set spherical (center). The “bias filter” enhances the direction that captures the signal of interest while reducing
directions with noise (second to right). The final PCA aligns these directions with the final component axes (right).
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The joint decorrelation method

Our goal is to combine sensor signals so as to obtain component
signals withmaximal signal-to-noise ratio. Theword “sensor” here des-
ignates an individual electrode, MEG sensor, pixel, or voxel. The sensor
signals are arranged as columns of a matrix X= [xtj], where t is time. If
the data are made up of multiple trials these are concatenated in time.
The J time series xtj of sensor valueswill be combined linearly to produce
K component signals ytk (Fig. 1a):

ytk ¼
XJ

j¼1

xtjwjk; ð1Þ

where wjk are weights that will be optimized. In matrix notation, Y =
XW, whereW is the analysis matrix of dimensions J× K, which converts
from sensors to components. Component analysis algorithms often as-
sume K = J, but we will allow K ≤ J to focus on a subset of the compo-
nents, or handle the case of data of deficient rank.

The sensor signals themselves might be a linear superposition
(mixture) of multiple sources of brain activity, noise such as eye blinks
and muscle artifacts, power line interference, sensor noise and so on.
Ideally, we would like each component to reflect an individual source
of neural activity, with the analysis matrix W serving as an un-mixing
matrix that reverses the effects of source-to-sensor mixing. However,
brain sources vastly outnumber sensors so this unmixing will not be
possible in a strict sense. Instead it is fruitful to see the analysis as a
tool to find the “best angle” to view the data, maximizing the SNR for
activity of interest.

A noisy signal can often be enhanced by averaging over trials (to
enhance trial-locked activity), or applying a filter (to suppress frequen-
cy regions dominated by noise), or simply by selecting a temporal
interval of higher SNR. These operations can all be formalized as left-
multiplication of the data by a matrix L that we will call “bias filter”.
JD leverages the selectivity of this filter to find optimal weights for
Eq. (1). We restrict ourselves to linear filters which have a number of
advantages as discussed in Appendix 1. Non-linear filtering is discussed
in Särelä and Valpola (2005).
The JD algorithm is simple. Given a set of sensor or electrode signals
X, the analysis matrix W is found by the following steps:

1. PCA applied to X produces a rotation matrix P that orthogonalizes
the data, so that columns of XP are mutually uncorrelated in time.

2. Normalization of XP produces a diagonal matrix N that renders the
data set “spherical” (unit power in all directions).

3. The biasfilter L applied toXPN enhances power along relevant direc-
tions while reducing power in noise directions.

4. PCA applied to the filtered data LXPN produces a rotation matrix Q
that aligns the relevant power with the final component axes.

The algorithm is defined more precisely in Appendix 1. The analysis
matrix is obtained asW= PNQ, which transforms the raw observations
X= [xtj] into the components Y= [ytk]. The first component signal [yt1]
is the linear combinationwith the highest possible score, where score is
defined as the ratio of power in the bias-filtered data relative to the raw
data. The second component signal [yt2] is uncorrelated to the first and
has the next highest score, and so on. If the bias filter enhances the sig-
nal of interest and reduces noise, this process produces components
sorted by SNR, and indeed in some cases JD is guaranteed to generate
components with optimal SNR (see Appendix 3).

The principle is illustrated in Fig. 1b. The raw observations x1 and x2
covary with a signal of interest (coded as color) along some direction
that does not coincide with either of the observed dimensions (left).
That direction is also not co-linear with directions of maximum or
minimum power, so PCA cannot isolate it (second to left). However,
rotation and scaling remove the influence of correlation between
sensors so that the data set is now “spherical” (center). The bias filter
then emphasizes the power of the signal of interest relative to irrelevant
directions (second to right). The second PCA aligns these signal direc-
tions with the component axes (right), thus producing a component
that is maximally sensitive to the signal of interest. Intuitively, JD can
be understood as a form of principal component analysis that maxi-
mizes the power-ratio between filtered and raw signal, and not just
power as in conventional PCA.

The choice of bias filter L depends upon the task, i.e. what should be
considered signal and what is noise (see Appendix 2 and examples
below). Different filters may be applied to the same data to emphasize
different aspects of thedata.While thefilter L is involved in determining
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the projection matrix W = PNQ, the resulting component signals Y =
WX are not filtered by L. Of course, it is possible to also include filtering,
i.e. calculate Y′ = LXW.

From a practical point of view, the matrix W is calculated on the
basis of two covariance matrices: C0, covariance of the raw data X, and
C1, covariance of the filtered data LX. Once the components are obtain-
ed, theymay be interpreteddirectly (as statistics derived from thedata),
or projected back into sensor space, or projected out to obtain denoised
data (see Appendix 4 for a precise definition of these notions). The
following examples show how these ideas can be applied to actual data.
Examples

The following tasks are typical of electrophysiology. JD solves the
problem in each case with a bias filter tailored to the task. In some
cases it is applied repeatedly with different bias filters. Details may be
found in Appendix 6.
Power line noise

The aim here is to identify a subspace dominated by “line noise”
(50 or 60 Hz and harmonics), and project it out of the data. This is a
common problem in animal and human electrophysiology; ideally it is
avoided by appropriate equipment design and shielding, but there are
situations where these precautions are not fully effective. If “reference
channels” are available, that pick up environmental noise but no brain
activity, the noise can be removed by regression (de Cheveigné and
Simon, 2007). However in the general case, the interference is intimate-
ly mixed with brain activity at all sensors. As an illustration, Fig. 2a
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Fig. 2. Removing power line interference from MEG data. (a) Power spectral density averaged
spectral density of noise. (c) Power-ratio scores for the first 40 components. (d) Time course o
shows the power spectrum of anMEG data set. Power at 50 Hz and har-
monics is prominent, accounting for 38% of the power in these data.

JD was applied using a bias filter with a comb-shaped transfer
function, with peaks at 50 Hz and harmonics, and zeros elsewhere,
producing a set of orthogonal components. The power-ratio score (filter
output to input) is plotted in Fig. 2c, showing that the first components
are strongly dominated by 50 Hz and harmonics. The first 20 compo-
nents (out of 274) were projected out of the data (see Appendix 6) to
obtain clean, noise-free data. At frequencies other than 50 Hz and har-
monics, the power spectrum of the clean data (Fig. 2b, red) is similar
to that of the raw data (Fig. 2a). The spectrum level of the noise (part
removed) is much lower [compare Figs. 2(a) and (b, green)], implying
that the impact of denoising on brain activity must be minimal. This
example shows how JD can be used to suppress environmental noise.

Stimulus-evoked activity

The aim here is to improve SNR by finding the subspace that is most
repeatable across trials. MEG data were obtained in response to repeat-
ed visual stimulation. The stimulus appeared 2.5 s from the onset of
each 5 s trial (see Appendix 6 for more details). Data were submitted
to JD using as a bias filter the average over 30 trials. To be precise, the
matrix C0 (see above) was the covariance matrix of the raw data, and
thematrix C1 was the covariancematrix of the data averaged over trials.
In this case the optimality criterion is the power of themean divided by
total power, which implies that the first component is characterized by
the strongest possible mean effect relative to overall variability. Fig. 3a
shows the power-ratio score for each JD component. The gray band
shows the 5–95% interval for that statistic based on surrogate data
(see Overfitting and circularity section). Fig. 3c shows the waveforms
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of the first 4 components. The blue line represents the average over
trials, and the gray band ±two standard deviations of a bootstrap
resampling of the mean (Efron and Tibshirani, 1993). Fig. 3b shows
the topography of the first JD component, calculated as the cross-
correlation coefficient between that component and the signal at each
sensor (Haufe et al., 2014; Parra et al., 2005). The first component is
the most repeatable linear combination of sensor signals; the first K com-
ponents span a “most repeatable subspace” of dimensionK. One ormore
components may be projected back into sensor space to obtain “clean
data” (de Cheveigné and Simon, 2008a).
Cardiac artifacts

The aim here is to identify a subspace dominated by electric or mag-
netic fields originating from the cardiac muscle, or indirect effects of
changes in blood pressure or flow, and project it out of the data. If an
electrocardiogram (ECG) channel is available, that signal may be
regressed out of the data, but the improvement is often limited by
differences in shape between the ECG and the artifacts, for example
due to different degrees of distortion along different pathways. An alter-
native strategy is to use the ECG to define epochs corresponding to
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cardiac cycles, and apply JD as described above for evoked activity, to
find a subspace that maximizes the power of the mean cardiac signal
versus total power. Fig. 3d shows the score for each component, and
Fig. 3f the waveforms of the first four components. These are clearly
locked to the cardiac rhythm. These components were then projected
out of the data to obtain “clean” data. Fig. 3e compares the signal from
one sensor before and after removal.
Narrowband cortical activity

The aim here is to improve the SNR of oscillatory activity. Narrow-
band oscillations are observed in deep electrode recordings in many
parts of the brain (Buzsáki, 2006), but in EEG and surface recordings
they aremore elusive, often obscured by other activity. Time–frequency
analysis, or filtering, may be used to improve signal-to-noise ratio, but
there is a concern that filter ringing may masquerade as oscillations
and complicate the interpretation of the data (Yeung et al., 2004).
Component analysis offers an alternative with potentially less artifacts
(but see caveats later on).

The same data, after removal of 50 Hz components, were submitted
to JD using a narrowband bias filter centered on 10Hz. Fig. 4a shows the
power-ratio score (bias filter output to input) for each JD component.
Fig. 4b displays a raster plot of the power spectra of the first 20 compo-
nents, showing that they are indeed dominated by 10 Hz power. Ap-
proximately 60% of the first component's power is within the spectral
region defined by the bias filter. Fig. 4d compares the power spectrum
of this component (red) to that of the sensor most dominated by
10 Hz (green), and Fig. 4c shows a sample of its time course, which is
shaped as a spindle-shaped oscillatory burst. This oscillatory shape is
not the result of, or distorted by, filter ringing (the bias filter used to
identify spatial components with maximal SNR is not included in the
0 20 40
0

0.2

0.4

0.6

component

sc
or

e

0 2.5

s

A
.U

.

a

c

Fig. 4. Narrowband activity in MEG data. (a) Power-ratio score for the first 40 components, for
represents the power spectrum of a component coded as color. (c) Sample of the time course o
most strongly dominated by 10 Hz power (green). (e) Topographies of first JD components for
sensor-to-component transform). This is in contrast to time–frequency
analysis for which the time course is smeared by convolution with the
analysis filter. The analysis thus appears to have uncovered genuine os-
cillatory activity. The topography associated with the first component is
shown in Fig. 4e. Fig. 4b shows that more than one component is dom-
inated by alpha, suggestingmultiple sourceswith different time courses
and spatial extent. Note that it is unlikely that these JD componentsmap
to individual neural sources, instead they collectively define a signal
subspacewithin which the measurable alpha activity is concentrated.

The same analysis can be repeated with other bias filter frequencies,
to search for other narrowband activity. Looking closely at Fig. 4b, the
7th component seems closer to 12 Hz than 10 Hz, and in Fig. 2b there
was also some hint of power near 16 Hz. Applying JD with a band-
pass bias filter centered on 12 Hz or 16 Hz isolates narrowband compo-
nents at those frequencies (Fig. 4f), and a wider bias filter centered on
30 Hz isolates a source of activity within the lower gamma band, with
a narrowly localized quadri-polar topography (Fig. 4e). The topogra-
phies of the other three components are dipolar, roughly consistent
with a current dipole source oriented parallel to the surface of the
head. Varying the bias filter frequency systematically did not reveal
any other narrowband components (which does not mean that none
exist, see de Cheveigné, 2012; Duncan et al., 2009). These examples
show how JD can be used to isolate neural activity with specific spectral
characteristics (see Nikulin et al., 2011 for a similar method).
Event-related desynchronization (ERD)

Visual and other perceptual stimuli may produce an increase or de-
crease in power in certain frequency bands, referred to as event-related
synchronization or desynchronization (ERS/ERD). This is usually revealed
by time–frequency analysis that serves both to improve the SNR of the
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effect, and to display its time course. However, time–frequency analysis
is subject to temporal smearing, and furthermore a weak ERS/ERD
source might be masked by other sources within the same frequency
band.

Using the same MEG data as before (visual stimulation), JD was ap-
plied using a bias filter that set to zero all samples beyond the onset of
stimulation (2.5 s from trial onset), within each trial. This will maximize
the power-ratio between the two intervals and thus capture ERD/ERS as
proposed in Parra et al. (2005). More precisely, C0 was calculated as the
covariance matrix of data in the 0–5 s interval, and C1 as the covariance
matrix of data in the 0–2.5 s interval (see Appendix 2). Fig. 5a shows the
power-ratio between interval 0–2.5 s and interval 2.5–5 s. The power of
thefirst componentwas almost two times greater in thefirst than in the
second interval. Its topography, and a raster plot of individual trials, are
shown in Figs. 5b and c respectively. Fig. 5d shows the spectrogram of
the first 4 ERD components. This spectrogram is dominated by power
in the 10–16Hz region, suggesting that the ERD activity is partly includ-
ed within the subspace of alpha activity found by the previous analysis.
Two conditions, repeated trials

The aim here is to optimize the SNR of brain activity that differs
between two different experimental conditions, each of which involves
repeated trials. We are interested in activity that is reproducible over
trials and distinct between conditions. As two criteria are involved, we
expect the solution to be within the intersection of two subspaces,
each one optimal for one of the criteria. Accordingly we apply JD
twice, first to identify a signal subspace that favors reproducibility,
and next to find the directions in that subspace that optimize the effect
of condition. To illustrate this we use MEG data from a study that
recorded responses to visual (V) or combined auditory and visual
(AV) stimuli (Molloy et al., in preparation), presented randomly inter-
leaved. Subjects performed a demanding task involving the visual stim-
ulus only, and did not attend to the auditory stimulus present on half
the trials. Accordingly, visual and task-related correlates were strong
in the MEG data, and there was little evidence of any auditory activity
within the raw sensor waveforms.



Fig. 5. Isolating interval-specific responses. (a–d) Event-related desynchronization (ERD). (a) Ratio of power in the 0–2.5 s interval relative to the 2.5–5 s interval for the first 40 JD com-
ponents. (b) Topography of the first component. (c) Raster plot of individual trials for the first component, showing a drop in power after approximately 2.5 s for most trials. (d) Spectro-
gram of the first four JD components averaged over trials. (e–g) Stimulus-evoked response to repeated visual or audio-visual stimuli. (e) Power-ratio score of the first 40 components.
(f) Time course of the first component in response to a visual (red) or audio-visual (blue) stimulus. (g) Topography of the first component. (h–j) Components that differ between visual
and audio-visual stimulation. (h) Power-ratio score of all components. (i) Time course of first component in response to visual (red) stimulation and audio-visual (blue) stimulation.
(j) Topography of the first component.
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JD was first applied to isolate a subspace of component signals that
responded reproducibly to both stimuli (V and AV). Matrix C0 was the
covariancematrix of the entire data, andmatrix C1 the sum of covariance
matrices of trial-averaged data for the V and AV conditions. Fig. 5e shows
the power-ratio score for thefirst 40 components, and Figs. 5f and g show
the time course and topography of the first component, respectively. The
time course of this component is very similar for V and AV (compare red
and blue in Fig. 5f), and the same was true for subsequent components
(not shown). There was no obvious sign of an auditory response in any
of these components.

In a second stage, JD was applied to a selected subset of components
(K=16) from thefirst stage, using asmatrix C0 the covariancematrix of
this subset, and as matrix C1 the covariance matrix of the difference
between averages over trials for the V and AV conditions. Fig. 5h
shows the power-ratio score, and Figs. 5i and j show the time course
and topography of the first component, respectively. The time course
of this component differs clearly between V and AV (compare red and
blue in Fig. 5f), and its dipolar topography is consistent with activity in
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the auditory cortex. Without this two-stage analysis the auditory activ-
ity would have been invisible. This example shows how JD can extract
an extremely weak source of condition-specific, stimulus-evoked activ-
ity from a competing background.

Additional examples

These examples involve a wider range of data types and tasks. A
first additional example involves electrocorticogram (ECoG) data re-
corded from a 128-channel surface array on the cortex of a monkey
(NeuroTycho project, http://www.neurotycho.org/), at the transition
between awake and anesthetized state. The processing goal is to charac-
terize brain activity affected by anesthesia. After dimensionality reduc-
tion (N = 22), JD was used to contrast the power after injection
relative to the power before injection (as in the ERD example above).
Fig. 6a shows the post/pre power ratio for each component (bottom
left), together with the power of each component as a function of time
(top), and the RMS (root mean square) of the topographies associated
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with the first 5 and last 5 components (bottom right). Brain activity is
radically changed by anesthesia: components active in the awake state
are shut down, whereas hitherto silent components become active.
Few components maintain a constant level of activity throughout the
recording.

In a second example the aim was to improve the SNR of calcium
signals recorded using two-photon microscopy in a mouse cochlear
inner hair cell (Culley and Ashmore, 2010, in preparation). A fluorescent
probe was introduced through a patch pipette that was also used to
depolarize the cell for 100 ms, opening channels in the cell membrane
to increase the intracellular calcium. This was repeated 9 times. JD was
applied twice in succession, each time with a different bias filter. First,
a linear trend was isolated using a bias filter that emphasized the differ-
ence between trial means and global mean. The topography and time
course of the first component are plotted in Fig. 6b, left. This component
was then projected out of thedata, to reduce the dominance of the linear
trend, and JDwas applied again, this time to extract the stimulus-evoked
activity. The time course and topography of the first two components
are plotted in Fig. 6b, center and right. These patterns suggest a gradual
change in calcium level gradient across the cell, superimposed on a pha-
sic response to stimulation. The presence of more than one reproducible
component suggests that the stimulus-evoked response was not per-
fectly synchronous across the imaging field.

The third example involves intrinsic optical imaging of the auditory
cortex of a ferret in response to pure tone sweeps (Nelken et al., 2008).
Each sweep (100 to 3200 Hz within 14 s) was repeated nine times. JD
was used to find linear combinations of pixel time series that were
most repeatable across repetitions. The four most repeatable JD compo-
nents were projected back to form “clean” data. Fig. 6c shows responses
sampled during the last 4 s of the sweep before (upper row) and after
(lower row) denoising. Here, non-repeatable components, such as
bloodflow-related, are attenuated making more salient the gradual
shift of activity across the cortex (from upper left to lower right).

The fourth example involves two-photon calcium imaging of the
auditory cortex of mouse in response to repeated stimulation by a
sequence of 17 pure tone pips of different frequencies (Winkowski
and Kanold, 2013). JD was used to suppress non-reproducible
activity. Fig. 6d, top shows the power-ratio score (left) and the topogra-
phy of activity before denoising (center) and after denoising (right).
Fig. 6d, bottom shows the time course of the activity of one neuron
(arrow in top right) before denoising (left) and after denoising (right).
Themean (blue) is similar before and after denoising, but the variability
of this estimate (gray band) is greatly reduced. See Appendix 6 formore
details on this and the other examples. These examples illustrate the
flexibility of JD as a tool to clean and analyze multichannel electrophys-
iological data.

How does it work?

JD finds a set of weights to apply to sensors, electrodes, pixels, etc.
that (a) suppresses themost prominent noise sources, and (b) preserves
the activity of interest. This is similar to the principle of a beamformer.
The weights are chosen such that the contribution of each noise source
i is balanced out (the sum of the products of mixing weights vij and
unmixing weights wjk is zero,∑jvijwjk = 0). The algorithm tries to find
a set ofweights such that this is satisfied for all noise sources, iwhile pre-
serving the target source i0 : ∑ jvi0 jwjk≠0. JD can be understood as an ef-
ficient way to searchwithin the JK-dimensional space of weights to find
this solution.

As illustrated in Fig. 1(b), the key step of spatial whitening
(decorrelation followed by normalization) removes all influence of var-
iance, so that the data set has no preferred direction in J-dimensional
space. The bias filter breaks the spherical symmetry, boosting the vari-
ance in the direction of the signal of interest, while shrinking variance
in irrelevant noise directions. The final PCA aligns these directions
with the component axes. The combination of spatial whitening and
final PCA produces a linear transformation that increases the signal-
to-noise ratio, where “signal” and “noise” are defined by the filtering
operation. As a counterpart of optimizing the desired feature, other ac-
tivity is minimized, and in this sense JD is a method to denoise the data.

Another way to conceptualize the effect of JD is to note that diago-
nalization of the data covariance matrix C0 defines a transform that
allows the total power (variance) to be neatly “packaged” as a sum of
powers (variances) of individual components, the cross correlation
terms being zero. Joint diagonalization of C0 and C1 implies that the
same packaging is valid for both the raw and the filtered data sets.
Any difference in power between raw and “filtered” (for example a
source active in one time interval but not the other) appears as a step
in the power of a component, as in Fig. 6a where monkey ECoG activity
is expressed as a sum of components that either turn on, or turn off,
under anesthesia.

Each component is defined by a vector ofweights (column of matrix
W, see Joint decorrelation methods section), and is associated with a
time series (weighted sum of sensor signals). Cross-correlation between
the component time series and the raw sensorwaveforms yields anoth-
er vector, of same size as theweights, that can be understood as a spatial
pattern or topography (e.g. Fig. 3b). This pattern is an estimate of the
amount of power accounted for by the component at each sensor. It is
distinct from the pattern of weights, and usually more informative
(Haufe et al., 2014).

Who invented it?

Fukunaga andKoontz suggested the present 2-step approach to joint
diagonalization as amethod to identify the difference in the spectrumof
two signals. A similar generalized eigenvalue problem arose earlier al-
ready in the context of linear discrimination (Fisher, 1936; Rao, 1948).
The concept of simultaneous diagonalization is well known in the con-
text of commuting matrices going back to Frobenius in 1878 (Drazin,
1951). Simultaneous diagonalization of two covariance matrices, as
discussed in the present paper, is the basis for the Common Spatial
Pattern (CSP) method of Koles et al. (1990) that is popular in the
Brain Computer Interface (BCI) literature (Blankertz et al., 2008;
Dornhege et al., 2006; Lemm et al., 2011; Tangermann et al., 2011),
and also appears repeatedly in the context of blind source separation
and ICA (reviewed in Parra and Sajda, 2003).

The Denoising Source Separation method of Särelä and Valpola
(2005), in its linear form, can be thought of as a generalization of CSP,
and of a number of other source separation techniques that exploit tem-
poral properties of the signals (Amari, 2000; Belouchrani et al., 1997;
Blaschke et al., 2006; Cardoso, 2001; Molgedey and Schuster, 1994;
Parra and Spence, 2000; Ziehe and Müller, 1998).

The contribution of the present paper is to emphasize the usefulness
of the basic principle (diagonalization of raw and filtered covariance
matrices) as a tool to perform a range of common tasks. The roots and
relations between methods are further discussed in Appendix 3.

Overfitting and circularity

A basic weakness, shared also by other techniques such as PCA, ICA,
beam-forming, and clustering, is that the analysis is data-dependent: the
matrix used to analyze the data depends on the data themselves. In the
present case, JD selects a linear combination of sensors (i.e. one direc-
tion within the J-dimensional space) that maximizes a given optimality
criterion. This is akin to data selection. The outcome of the analysis may
then falsely appear to confirm the hypothesis that motivated the analy-
sis, a problem known as circularity (Kriegeskorte et al., 2009). Over-
fitting is most severe when the number of free parameters is large rela-
tive to the number of data that constrain them,magnifying randompat-
terns and producing seemingly salient effects that are purely artifacts (as
in StudyA below). Onemust be alert to this possibility and checkwhether
effects observed are robust, for example using cross-validation or
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resampling techniques (Hyvarinen, 2012; Meinecke et al., 2002). As an
example, the analysis of Figs. 3a–c was repeated 1000 times with surro-
gate data obtained by excising “trial” epochs at random positions within
the MEG data. The 5–95% interval of the power-ratio statistic is plotted
as a gray band in Fig. 3a. The power ratio values obtained for the real
data are well outside of this range, giving us confidence that the pattern
extracted by JD is real and not due to overfitting (which is nevertheless
manifest as the upward turn of the gray band near the left axis).

Other caveats and cautions

It is tempting to attribute JD components to individual neural
sources, in the spirit of the blind source separation paradigm that
motivates ICA. As noted earlier this is unlikely to be valid, if only because
a small number of sensors cannot possibly resolve themany concurrent
sources within the brain. In addition, the components obtained are
mutually uncorrelated, whereas parts of the brain that work together
are likely to have correlated activities. Rather, the best that we can say
is that any subset of selected components defines a subspace of the
data in which the activity of interest is concentrated.

Failure scenarios

The following examples are imaginary but based on real situations.
The aim is to give hints as to what might go wrong. They are not a
complete catalog. Appendix 7 contains more details including figures
illustrating these effects.

Study A recorded cortical responses using a 440-channel MEG
system. The data were low-pass filtered at 20 Hz, and organized into
epochs. Unbeknownst to the experimenter, stimulation failed so there
should have been no reproducible response. Nonetheless, when JD
was applied to emphasize activity reproducible over epochs, a clear
pattern emerged. What happened? The answer is: over-fitting. 440
free parameters were available to define each JD component, and the
degrees of freedom available to constrain them were too few, in partic-
ular as lowpass filtering increases the serial correlation between sam-
ples. How to diagnose the problem? There are many techniques to
test for overfitting. For example, repeat the analysis on a randomized
version of the data (time markers are randomly shifted) so that repro-
ducibility of a stimulus is not expected, and take the level of activity
seen with such random data as an indication of chance performance.
How to fix the problem? Apply PCA to reduce the dimensionality.
Increase the number of trials. Consider removing lowpass filtering.
And of course: check the stimulation.

Study B recorded responses to 100 repetitions of a stimulus. JD was
applied in the hope of reinforcing the evoked response relative to strong
50 Hz power line noise. Unexpectedly the first few JD components
contained mainly 50 Hz and harmonics. What happened? The experi-
menter made the mistake of presenting stimuli with inter-stimulus
intervals that were all multiples of 1/50 Hz (20 ms). As a result, the
50 Hz activity was reproducible across trials, leading it to occupy the
first JD components. How to fix? Make sure that stimulus presentation
is incoherent with repeatable noise sources such as 50 Hz, heartbeat,
and alpha activity. If data are already collected, use JD to isolate compo-
nents dominated by 50 Hz and harmonics and project them out (as in
example 1 above), prior to the main JD analysis. Or filter the data with
a 20 ms boxcar window (to suppress 50 Hz and all harmonics), or a
notch filter.

Study C investigated a weak source activity time-locked to the
stimulus. JD was applied to enhance it, but unexpectedly the best JD
component was strongly affected by a noise source that did not seem
particularly reproducible across trials. What happened? The target and
noise happened to be collinear in the data, so that any transformation
that selected one necessarily selected the other. How to fix? One way
is to increase the number of sensors or electrodes so as to increase the
dimensionality of the observations. Another is to try advanced tech-
niques such as TSDSS (see Appendix 5).

Study D used EEG to probe stimulus-evoked activity. A slow driftwas
superimposed on the data producing relatively large DC offsets within
some trials. To attenuate these offsets, the experimenter removed
means from all trials. Unexpectedly, the first JD component appeared
to be superimposed on a ramp. What happened? Removing the mean
on each trial transformed the slow drift into a reproducible ramp
pattern, that JD then enhanced, superimposing it on the genuine evoked
response. How to fix?Do not remove themean from each trial. It is not a
good idea to remove trends trial by trial, be they constant, linear, or
polynomial. Insteadfit a polynomial to thedata before cutting into trials,
and subtract the fit. Another option is to use JD in a preprocessing stage to
project out the slow drift, or else apply high-pass filtering prior to analysis.

Study E looked for 10 Hz oscillatory activity within an in-vitro prep-
aration. Data were recordedwith an electrode array, and JDwas applied
using a bandpass biasfilter centered on 10Hz. Bursts of 10Hzoscillation
were indeed found. However the experimenter also tried other bias
filter frequencies, and found oscillations at those frequencies too,
suggesting that something was wrong. What happened? Actually, the
activity was not oscillatory but propagatory, consisting of bursts of
activity that activated different electrodes in sequence. However,
given the objective of emphasizing oscillatory activity, JD produced a
grid-shaped pattern of weights, and the propagation of the bursts over
this pattern produced the apparently oscillatory response. How to fix?
There is no easy way to rule out this sort of artifact, but projecting the
data back to sensor space should reveal the propagatory phenomenon.
The experimenter must be attentive and question every effect found.

Study F searched for neural substrates differentially activated by two
tasks. JD was applied to find the most discriminative linear combina-
tions of channels. Unexpectedly, the first few components mainly
contained small glitches or eye-related activity. What happened? JD is
sensitive to any difference in variance. A glitch may be small, but if it
only occurs in one interval and not the other it may take precedence
over genuine activity. How to fix? One solution is to identify these arti-
factual components and project them out, prior to JD analysis. Another
is to remove channels affected by glitches, or to apply temporal
weighting to exclude the glitch intervals from the analysis. A third is
to reduce the dimensionality of the data with PCA, so as to remove
dimensions with low power, often dominated by glitches.

Study G applied JD to find activity time-locked to a repeated stimu-
lus. Two highly repeatable components were indeed found, implying
that response reflected at least two distinct neural sources, with distinct
topographies and time courses. However, their shape was not consis-
tent across subjects. The topographies did not fit the dipolar pattern
expected of a single source, and their time-courseswere alsomore com-
plex than expected.What happened? JD recovers components that span
the same subspace as themeasurable stimulus-locked activity, but there
is no guarantee that the components match neural sources, rather than
being linear combinations of them. How to fix? Various techniques such
as ICA, sparse component analysis, or canonical correlation analysis,
may be useful to find meaningful directions within the selected sub-
space. These are beyond the scope of this paper.

A general tool for data analysis?

Many analysis techniques are available, often in multiple flavors,
which is an obstacle when searching for a tool to perform a specific
task. Trying out new tools is time consuming, and JD is no exception,
but hopefully the investment is recouped over a range of tasks. JD can
be used to enhance activity of interest, or to isolate unwanted activity
and project it out of the data. It can be used repeatedly on the same
data with different bias filters (de Cheveigné et al., 2012), to probe the
data for different response characteristics, or in steps to isolate and
remove sources in succession. It is deterministic (whereas some ICA
methods offer different solutions on different trials), it produces
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components in a well-defined order, and its computational cost is rela-
tively low, so it can be applied to the large data sets typical of EEG or
MEG. Finally, it is easy-to-understand, and gives insight into more so-
phisticated methods.

In summary

The JD algorithm addresses a variety of needs that arise in the anal-
ysis of multichannel electrophysiological data. Attractive features are
(a) the algorithm is easy to understand, (b) processing is simple and
efficient, (c) the method is flexible and can be reused for different
tasks, and (d) the result is good.
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Appendix 1. Precise description of JD

Given thematrix of observation signalsX, with dimensions T× J, the
first PCA matrix P, with dimensions J × J, is obtained by eigen-
decomposition of the covariance matrix1:

C0 ¼ X⊤X: ð2Þ

The eigen-decomposition of this matrix is given by:

C0P ¼ PD; ð3Þ

where the columns of matrix P are the orthonormal eigenvectors and
the diagonal matrixD holds the corresponding eigenvalues. Each eigen-
value represents the power (variance) of the data along the direction
determined by the associated eigenvector. SettingN=D−1/2, “sphered”
signals are obtained by rotating and dividing each dimension by that
scale:

Z ¼ XPN: ð4Þ

This transformed datamatrix Z again has dimensions T× J, but its co-
variance matrix is given by the identity matrix Z⊤Z= I, i.e. the data are
uncorrelated and have unit power (variance) in all dimensions. Next,
we apply the bias filter L to Z. By “bias filter” we mean here any linear
transformation on the time domain:

Z ¼ LZ; ð5Þ
1 Note thatwe have not subtracted themean so this is not strictly speaking a covariance
matrix. But the subsequent discussion applies equally to the covariance matrix calculated
after subtracting the mean.
where L is a matrix of dimensions T′ by T. Importantly, this filter
enhances the signal and suppresses noise. The covariance of the filtered
data is:

C1 ¼ Z⊤Z; ð6Þ

and its eigen-decomposition gives us the second rotation matrix Q:

C1Q ¼ QDz: ð7Þ

The rotationQ aligns themain axes of the bias-filtered data with the
final components:

Y ¼ ZQ ; ð8Þ

that are uncorrelated and ordered by decreasing variance. Once matri-
ces P, N and Q have been obtained, the same sequence of transforma-
tions can be applied also to the raw data without filtering:

Y ¼ XPNQ ; ð9Þ

giving Eq. (1) in the main text with

W ¼ PNQ : ð10Þ

Wenote that both the bias-filtered dataY ¼ LXW, and the unfiltered
data Y = XW have now a diagonal covariance matrix, i.e. the time
courses of these components (columns of Y and Y) are uncorrelated
for both filtered and unfiltered data.

Appendix 2. The bias filter

We call biasfilter any operation that can be performedby combining
samples of a signal in time, the same operation being performed on all
channels, and independently for each channel. With this definition,
bias filtering is implemented by left-multiplying the data matrix with
a matrix L as in Eq. (5).

Fig. 7 shows three examples of bias-filter matrix similar to those
used in the examples. In Example 2 of the main text (stimulus-evoked
response), the filtering operation consisted simply of averaging over
trials. This is formalized as left-multiplication by a matrix L made by
horizontal concatenation of n identity matrices of size T′ × T′ where T′
is the length of an epoch and n is the number of trials, analogous to
that shown in Fig. 7a. In the monkey ECoG example (effects of anesthe-
sia), the filtering operation is formalized as a matrix L analogous to that
shown in Fig. 7b, of size T′ × Twhere T′ is the length of the interval pre-
ceding the injection, and T that of the full data set (this is called “on/off-
denoising” in Särelä and Valpola, 2005, or “maximum power-ratio” in
Parra et al., 2005). In Example 4 of the main text (narrowband cortical
activity), the narrowband filter centered on 10 Hz is formalized as
left-multiplication by a matrix L of Toeplitz structure similar to that
of Fig. 7c (referred to as “denoising based on frequency content” in
Särelä and Valpola, 2005).

Other linear operations on the time/trial axis can be envisioned.
Probably the earliest example is the blind source separation algorithm
by Molgedey and Schuster (1994) which is recovered here if L imple-
ments a time delay. Another is slow-feature analysis in which L imple-
ments the temporal derivative and the goal is to find the components
with the smallest derivatives (the “slow” components) (Blaschke
et al., 2006; Wiskott and Sejnowski, 2002). In addition to linear filters,
the DSS algorithm of Särelä and Valpola (2005) allows for non-linear
filtering operations. However, the discussion in this paper is restricted
to linear filtering only. Linear filters have a number of advantages over
non-linear filtering: 1) they lead to the close-form solutions presented
above, 2) the resultant algorithm can be implemented in a few lines of
code using standard eigen-decomposition routines, 3) they allow us to
make links to closely related classic signal analysis techniques, 4) they

http://neurotycho.org
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Fig. 7. Examples of matrix L corresponding to the three types of bias filter used in the examples. (a) Average over trials (here there are n = 5 trials). (b) Selection of a temporal interval
(here the first half of the time axis is selected). (c) Bandpass filter (2nd-order resonator).
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provide a simple geometric interpretation (Fig. 1), and finally 5) they
allow us to prove optimality in terms of signal-to-noise ratio as we
will demonstrate next.

Appendix 3. Roots of the approach, optimality

A similar two-step procedure for diagonalizing two covariance ma-
trices was described by Fukunaga and Koontz in 1970 in the context
of diagonalizing two correlation matrices C0 and C1 (Fukunaga, 1972,
1990; Fukunaga and Koontz, 1970). Their goal was to identify linear
transformations that best distinguish between two signals character-
ized by their respective auto-correlation matrices. The same problem
of finding the best linear subspace to distinguish between two classes
was addressed by Fisher in 1936 (Fisher, 1936), and later extended by
Rao to the multi-class problem in 1948 (Rao, 1948). Rao's approach is
now known as Fisher Linear Discriminant (Duda et al., 2012). In their
case C0 and C1 represent the between- and within-class covariances.
Rao proposed that the eigenvectors of C0

−1C1 with the highest eigen-
values span a space that best separates these classes:

C−1
0 C1W ¼ WD: ð11Þ

These directions maximize the differences between classes, let's call
it “signal” variance, relative to the “noise” variance within each class.
Quantitatively this is captured by the determinant ratio (see criterion
(13) below). It is interesting to note that this W also diagonalizes both
covariance matrices C0 and C1 individually (Fukunaga, 1972, 1990).
While originally intended forwithin- and between-class covariancema-
trices, mathematically, the approach of Fukunaga–Koontz for diagonal-
izing two correlation matrices gives the same answer as the one-step
solution using Eq. (11) (Fukunaga, 1972, 1990). What is perhaps even
more intriguing is that the condition of simultaneous diagonalization,
which is solved by this eigenvalue problem, reoccurs for a number of
source separation problems. In source separation the first matrix often
corresponds to the correlation matrix of the raw data C0 = X⊤X, as in
the present case. The second matrix can take on different forms, de-
pending on the assumptions made about the sources (non-Gaussianity,
non-stationarity, non-whiteness) (Parra and Sajda, 2003). For the case
of JD discussed here C1 corresponds to the covariance of the bias-
filtered signal C1 = X⊤L⊤LX. The resultingW from Eq. (11) is identical
to the solution of the two-step procedure (Eq. (10)), provided the
arbitrary scaling of W is chosen to sphere C0 (see Fukunaga, 1972,
1990, Chapter 2, albeit in the context of classification and not source
separation).

What is so special about the directions of the eigenvectors defined
by these two symmetric matrices? As it turns out, these directions are
optimal in a number of important ways, namely, the eigenvectors
with the K largest eigenvalues (K b J) span the K-dimensional subspace
with the maximum determinant-ratio as well as the maximum trace-
ratio (Fukunaga, 1972, 1990, Chapter 10):

W ¼ arg max
W∈ℜ J�K½ �

W⊤C1W
�� ��
W⊤C0Wj j ð12Þ

¼ arg max
W∈ℜ J�K½ �

Tr W⊤C0W
� �−1

W⊤C1W

)
:

(
ð13Þ

Importantly for the present case, from this follows that the top K
eigenvectors maximize the summed power-ratio of the bias-filtered
versus unfiltered component, if we add as a constraint that the compo-
nents are uncorrelated in time:

W ¼ arg max
W∈ℜ J�K½ � ;s:c:Cy¼diag

XK
i¼1

σ2
yi

σ2
yi

; ð14Þ

where σ2
yi
and σ2

yi
are the power of the ith component for the raw and

filtered versions of thedata, i.e. the diagonal termsof the two covariance
matrices. This finding is true for any K b J, in particular for K = 1,
meaning that the first component has the largest possible power ratio
(a criterion already proposed in Parra et al., 2005). The second compo-
nent is uncorrelated from the first and, within that constraint, it cap-
tures again the largest power ratio, the third is uncorrelated from the
first two and captures thenext highest power ratio, and so onuntilfinal-
ly the Jth component captures the smallest remaining power ratio. This
means that the components extracted by JD are sorted by the power
(variance) of the filtered signal relative to the raw data. Assuming that
filtering enhances the signal of interest and attenuates uncorrelated
noise, this implies that the eigenvectors capture uncorrelated compo-
nents of the signal ordered by signal-to-noise ratio.

In fact, under the following set of assumptions the components can
be shown to maximize signal to noise ratio. Assume that the observa-
tions represent the signal plus some additive uncorrelated noise, X =
S + N, so that the covariances are additive:

C0 ¼ RX ¼ S⊤Sþ N⊤N ¼ RS þ RN : ð15Þ

Assume in addition thatfilter L attenuates the noisewith gain gN and
enhances the signal with gain gS but leaves the correlation structure of
each unchanged, RS ¼ g2SRS;RN ¼ g2NRN . Then:

C1 ¼ RX ¼ S⊤L⊤LSþN⊤L⊤LN ¼ g2SRS þ g2NRN : ð16Þ

AmatrixW that diagonalizes two symmetricmatrices, sayRS andRN,
also diagonalizes any linear combination of the two, in particularRX and
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RX.2 Thismeans that solutions to the eigenvalue (Eq. (11))with C0=RX

and C1 ¼ RX are also solutions to the same eigenvalue equation with
C0 = RN and C0 = RS. The order of eigenvalues is the same provided
that gS N gN (this can be shown using a similar argument as in
Fukunaga, 1972, 1990, Chapter 2). Thus, the same projections of the
data that maximize the power-ratio between filtered versus unfiltered
signal – as in Eq. (13) – also maximize the power ratio between signal
and noise. In short, JD maximizes SNR. The key assumption for this to
hold is that the triplet (filter/signal/noise) satisfies conditions (15)
and (16). Note that the filter does not have to be perfect at suppressing
noise. Optimal SNR is achieved as long as the signal-gain is larger than
the noise-gain. To our knowledge, this optimality had not been previ-
ously recognized.

Under which conditions is Eq. (16) satisfied? For the case that the
bias filter implements trial averaging (Fig. 7a) Eq. (16) is satisfied if
the reproducibility of the different signal components is the same, i.e.
all signals of interest have the same level of variability across trials.
For the case of a bias filter that defines the signal of interest by selecting
a specific time-interval (Fig. 7b) all that is required is that noise compo-
nents are (second-order) stationary across the different time intervals.
Finally, for a shift-invariant temporal bias filter (Fig. 7c) this condition
is satisfied if all signal components experience the same gain gS and all
noise components gain gN. This does not necessarily require perfect
separation in the frequency domain between the signal of interest and
the noise — it suffices for the different signal components to have the
same spectral content, and similarly for the noise to be spectrally the
same across components.

Appendix 4. How to use JD repeatedly (deflation)

Removing components and projecting back into sensor space

In themain textwe state that a subset of componentswas “projected
out” of the data, or instead “projected back” into sensor space. What is
meant is that the original data are replaced by a version that does not
contain any activity correlated with the components that are removed.

This can also be understood in terms of subspaces of the vector space
formed by all linear combinations of the J sensor signals. That space is of
dimension at most J (it can be less if sensor signals are linearly depen-
dent, in particular if T b J). The JD components form an orthogonal
basis of that space. A subset of K components defines a subspace, orthog-
onal to the subspace spanned by the J–K remaining components.
“Removing” the K components is the same as projecting the data on
the orthogonal subspace.

A simple way to accomplish this is with the following operation:

X̂ ¼ XWEW−1
; ð17Þ

where the diagonal matrix E has 0 for all the components that are to be
removed and 1 for all that are to be preserved. In the case that dimen-
sions have been omitted in the first PCA and W is rectangular the
inverse here refers to the pseudo-inverse.

Deflation, dimensionality reduction

JD can be applied repeatedly to the same data set, projecting out
selected components at each step (deflation). The rank of the data is
reduced at each step. JD handles rank-deficient data in the initial PCA
by removing eigenvectors with eigenvalues smaller than a threshold,
so there is no problem with applying it repeatedly in this way.

The eigenvalue procedure of Eq. (11) is often considered inadequate
in practice because it is very sensitive to estimation errors in the
2 The set ofmatrices that can be diagonalized by a singlematrix forms a toral Lie algebra
(Humphreys, 1972; Newman, 1967). The set of linear combinations of two covariancema-
trices is an example for such a toral Lie algebra.
correlation matrices C0 and C1. Of particular concern is the inverse of
C0, which may be dominated by very small noise contributions within
the null space of the signal of interest. This problem may become
more severe as the number of sensors increases and the activity of near-
by sensors becomes strongly correlated. A simple and classic solution is
to remove dimensions that carry little power in the data, i.e. remove all
directions with a small eigenvalue of C0. In the two-step procedure of si-
multaneous diagonalization this is done by using only the eigenvectors
with the largest eigenvalues of C0 in Eq. (4). If we keep K b J dimensions,
this means that P is of size J × K, and that Z and Y are of size T × K andW
of dimension J × K, i.e. there are now only K components. This addresses
the issue of the sensitivity of the null space of C0 to small amounts of
noise. However this is assuming that activity of interest resides within
the subspace spanned by the dimensions retained, which might not be
the case if its variance is small.

Multiple-step JD

In several examples, JD was applied twice with different bias filters.
At each step, JD optimizes the criterion at hand, and therefore onemight
expect that the outcome depends only on the second bias filter. What,
then, is the advantage of the initial step? The first step allows the data
to be projected to a smaller subspace, selected according to the first
bias filter. The second step then finds an optimal solution according to
the secondfilterwithin this subspace. The second JD operates in a small-
er space and is less prone to over-fitting, and the solution thus favors the
properties enforced by both filters.

Appendix 5. Relation to other methods

Extensions

Time shifts applied to thedata allow JD solutions to implementmulti-
channel finite impulse response (FIR)filters that can separate sources in
the spatio-temporal domain. This is the idea behind the Time Shift DSS
(TSDSS) method (de Cheveigné, 2010, see also Blankertz et al., 2008;
Dornhege et al., 2006). A source that is not spatially separable from
noise may nonetheless be resolved if the spectral characteristics (e.g.
latency) of source and/or noise differ between sensors. In place of
time shifts, other convolutional transforms can be used, for example a
filter bank, and indeed the whole operation may be performed in the
frequency domain. The one-channel case is that initially addressed by
Fukunaga and Koontz (1970). Cross-products between channels allow
JD to operate within the space of quadratic forms of the signals. This is
the basis of the Quadratic Component Analysis (QCA) method (de
Cheveigné, 2012) that finds components with power that obeys some
criterion, for example repeatability across stimulus trials (such activity
is referred to as induced, repeatable in power, as opposed to evoked, re-
peatable in both power and phase). In this paper we only considered
linear bias filtering operations, for which a solution is found in a single
step. The authors of Särelä and Valpola (2005) consider a wider range
of operations for which the solution is found iteratively.

ICA

How does JD differ from other source separation techniques such as
ICA? Conceptually, the difference is in the rule to calculate thematrix C1.
If the data are indeed a mixture of J independent sources, then all
choices of C1 should provide the identical answer (Parra and Sajda,
2003). In practice, however, the assumption that the dataX is generated
by J and only J independent sources is rarely correct, and as only a lim-
ited sample of data is observed the parameter estimates are imperfect.
Thus, different techniques will provide different answers.

ICA is usually defined devoid of any temporal context, i.e. an ICA al-
gorithm should give identical answers when applied to the same data
but with samples that are scrambled in time. Thus, the algorithms
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must rely entirely on the non-Gaussian distribution of source signal
samples. In contrast, second-order source separation algorithms, such
as Belouchrani et al. (1997), Cardoso (2001), Molgedey and Schuster
(1994), Parra and Sajda (2003), Wiskott and Sejnowski (2002), and
Ziehe and Müller (1998) to list just a few, exploit the fact that sources
have different temporal characteristics, for which the order of samples
in time is essential. Temporal structure is what allows JD and other
source separation methods to rely entirely on second order statistics.
The field of blind source separation (BSS) methods, including ICA, has
developed a wide range of sophisticated techniques (Cardoso, 2001;
Choi et al., 2005; Cichocki, 2004; Parra and Sajda, 2003). Here we
show that much can be achieved by one simple algorithm.

A decision tree

Whichmethod to choose? The researcher setting out to analyze data
is greeted by a daunting palette of methods. There is no overall “best”:
the choice of method depends on the nature of the data and the goals.
These may become clear only during the analysis, so it is good to keep
in mind a range of methods. JD constitutes a good starting point,
because it is easy to understand and can address many tasks effectively.
We offer here some hints as to how to orient oneself within the multi-
tude of methods.

Average over trials?
Averaging, a standard tool to improve SNR, is applicable if a phe-

nomenon repeats time-locked to an available reference (e.g. a trigger
locked to stimulus or response). Downsides are that trial-specific
patterns are lost, and the benefit increases only as

ffiffiffiffi
N

p
where N is the

number of trials, i.e. it follows a law of diminishing returns.

Filter?
Filtering is another standard tool to improve SNR, usefulwhen target

and noise have different spectral properties. It involves convolution
with an impulse response, and thus entails loss of temporal resolution
and distortion of the waveforms (smoothing, ringing, etc.).

Select channels?
If SNR is good on one particular channel, that channel may be

selected.

Average channels?
If SNR is good on a group of channels, those channels may be aver-

aged.More generally, if the SNRmap is known, it may be used to design
a matched spatial filterwhere each channel is weighted by its SNR.

Common mode rejection?
If noise affects all channels equally, the average over channels may in-

stead be subtracted from each channel. Alternatively, one may calculate
the spatial gradient, or Laplacian. Such operations are routinely used in
electrophysiology (e.g. “Current Source Density”, CSD, or “re-referencing”
in EEG).

Component analysis?
The previous are particular cases of a linear combination of channels.

Given J channels, J − 1 parameters are available to fine-tune the noise
rejection. Component analysis such as PCA, ICA, and JD can be under-
stood as techniques to automatically find these parameters. In some
cases it is possible to cancel the noise perfectly, for example if the
noise is not of full rank (fewer noise sources than sensors). Granted
that the solution founddoes not also cancel the target, the SNR improve-
ment is infinite. JD and beamforming attempt to find such solutions, and
blind separation techniques such as ICA may have a similar effect.
Do noise and target have the same correlation structure?
In this case component analysis is not useful, because any combina-

tion that cancels the noise also must cancel the target.

Are target-to-sensor mixing coefficients known?
Such is the case if the anatomical location of the source is known and

a forward model is available. Beamforming (Hillebrand et al., 2005;
Sekihara et al., 2006) can then be used to find a solution that minimizes
the variance from other positions while preserving that of the source.

Does the target have a characteristic that can be enhanced by a bias filter?
Use JD to find components that best reflect the target, and project

them back to get clean data.

Does the noise have a characteristic that can be enhanced by a bias filter?
Use JD to find components that best reflect the noise, and project

them out to get clean data.

Are target and noise statistically independent?
Consider ICA. ICA methods (of which there are many) rely on some

empirical measure of “independence”. The sources must be at least
one of: non-Gaussian, non-white, non-stationary (Cardoso, 2001;
Parra and Sajda, 2003).

Does the instantaneous power of target and/or noise have a characteristic
that can be enhanced by a bias filter?

Consider Quadratic Component Analysis (QCA) (de Cheveigné,
2012).

How to choose the bias filter?
The best bias filter depends on the task and the nature of the data. If

target or noise is narrow-band, use a bandpass filter. If either is time-
locked to a series of triggers, average over trigger-aligned epochs. If ei-
ther is active within restricted time intervals, or its power is correlated
with a known temporal masking function, then filter by weighting
with that function.

What about PCA?
Principal Component Analysis transforms the data into components

(PCs) that are mutually uncorrelated. Their variance equals that of
the data, and most of it is packed into the first components, so that
discarding the later components yields a low-dimensional approxima-
tion to the data. PCA is useful as a descriptive tool, to understand the
correlation and variance structure of the data, and to reduce dimension-
ality before other forms of analysis (ICA, JD, etc.). It is usually less useful
when applied directly to separate noise and target.

It isworth noting that certain of these approachesmay be combined.
For example JD can be combined with filtering and trial-averaging.

Appendix 6. Details of examples

This section provides additional details concerning the examples
given in the main text. The first five examples use the same MEG data
set, the sixth uses a different MEG data set, and the last four examples
involve data from other recording techniques (ECoG, intrinsic optical
imaging, and 2-photon calcium imaging).

Power line noise

This example uses data from a published study that measured MEG
responses of human subjects to visual stimulation (Duncan et al., 2009).
During each 5 s trial, the subject fixated a cross during 2.5 s, followed by
a grating within the lower right or left quadrant during 2.5 s. Stimuli
were repeated for a total of 160 trials, of which a subset of 30 is used
in the examples in this paper. Data were recorded with a 274-channel
gradiometer MEG system (CTF) at a 600 Hz sampling rate. Further
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details can be found in the original study (Duncan et al., 2009). These
data were also used for illustration in a recent study on induced
responses (de Cheveigné, 2012).

JD was applied using a bias filter with peaks at 50 Hz and harmonics,
and zeros elsewhere, implemented with a 1024-sample FFT. Each com-
ponent produced by the JD analysis was examined to determine (a) that
it was significantly dominated by 50 Hz and harmonics, and (b) that it
did not contain appreciable stimulus-evoked activity. The first 20 com-
ponentsmet these criteria andwere projected out of the original data to
obtain clean data. There is a tradeoff between the amount of remaining
noise and the risk of projecting out brain activity collinear with the
noise, but the choice in this case was not critical.

Stimulus-evoked activity

This example used the same data as the previous example after
removal of 50 Hz components. JD was applied as described in the main
text. A more detailed discussion of the use of JD to enhance stimulus-
evoked activity is in de Cheveigné and Simon (2008a).

Cardiac artifacts

This example used the same MEG data as the first example after
removal of 50 Hz components. An ECG signal was not available, and
therefore a cardiac trigger signal had to be derived from the data. JD
was used for this purpose, using a criterion that favors components
with large kurtosis (i.e. localized large amplitude values interspersed
with low amplitude values): matrix C0 was the covariance of the raw
data, matrix C1 was the covariance of the signal weighted by a temporal
mask function. This maskwas calculated by taking the absolute value of
the signal in each channel, and then averaging over channels. The mask
emphasized intervals where the instantaneous amplitude is large,
allowing JD to find components with locally large amplitudes, in this
case cardiac components. Zero crossings of the first component were
used as trigger points to define cardiac epochs.

On the basis of this cardiac trigger, JD was applied again, this time in
the sameway as for stimulus-evoked activity:matrix C0 was the covari-
ance of the raw data, matrix C1 was the covariance of the data averaged
over cardiac epochs. The plots in the main text are the result of this
analysis.

Narrow-band cortical activity

This example used the same MEG data as the first example after
removal of 50 Hz components. JD was applied using as a bias filter a
bandpass filter (second-order resonator). The analyses reported in the
main text used filter center frequencies (10, 12,16, 30 Hz) chosen on
the basis of a systematic scan of the data over a 1–100 Hz range (results
not shown). The quality factor of the resonator filter (Q = 8 for 10, 12,
16Hz, Q=4 for 30Hz)was chosen to roughlymatch thewidth of spec-
tral peaks in the data, but its value did not appear to be critical. Power
spectra in Fig. 4 were calculated with a 2.56 s Hanning window. It is
worth noting that the scan failed to reveal one notable narrow-band
component (stimulus-induced gamma oscillation near 50 Hz) that was
found in the same data in other studies (de Cheveigné, 2012; Duncan
et al., 2009). A likely reason for this failure is that the stimulus-induced
gamma was collinear with lower-frequency activity, preventing it from
emerging as a spatially distinct component in this study. The cited stud-
ies preprocessed the data with a high-pass filter, and this presumably
allowed the oscillatory component to emerge.

Event-related desynchronization (ERD)

This example used the sameMEG data as previous examples after re-
moval of 50 Hz components. The analysis proceeded in two steps. In a
first step, the data were normalized to give equal power to all channels,
PCA was applied, and PCs with power greater than 0.1 were selected
(n = 50). PCs with large power represent activity that is “shared” across
sensors, and thus is likely to reflect a genuine cortical source. Conversely,
PCs with small power are either specific to few sensors, or more wide-
spread but with very low SNR on each sensor. The threshold chosen
(0.1) was very conservative. Reducing dimensionality in this way (274
to 50) reduces the risk of over-fitting. The results shown in the main
text were obtained by applying JD to the reduced data. The power spec-
trogram of Fig. 5d used a 640 ms window.

Two conditions, repeated trials

This example used a different set of MEG data derived from an un-
published study (Molloy et al., in preparation) that involved both visual
(V) stimulation and combined auditory and visual (AV) stimulation. V
and AV trials were randomly interleaved. Visual stimuli consisted of a
small circle centered on the screen surrounded by letters, presented
for a duration of 100 ms. Audio stimuli, when present, had the same
onset and duration as the visual stimulus and consisted of a tone of
one of four frequencies (0.5, 1, 2, 4 kHz) presented at a level of 10 dB
SL. Subjects performed a search task on the visual stimulus and were
not encouraged to attend to the auditory stimulus when it was present.
The cortical response to this unattended soundwas a focus of the study.
Data were recorded from a 274-channel axial gradiometer system at a
600Hz sampling rate. Analysis was performed on epochs of 1 s duration
centered on the stimulus onset. The average of the data over the 500ms
pre-stimulus interval was subtracted prior to processing (baseline
correction). JD analysis was carried out in two steps, as described in the
main text. The first step foundmultiple highly-reproducible components,
all of themwith non-auditory topographies (only the first is shown in the
paper). The second step, applied to the first 16 components from the first
step, found two components with a clearly reproducible difference be-
tween trial-averaged responses. Both of these components had bilateral
dipolar responses over the temporal region consistent with activity in
the auditory cortex (only the first is shown in the paper).

Monkey ECoG

Data were taken from the NeuroTycho project web page (http://
www.neurotycho.org/, data set “ECoG-100604”). Data were recorded
from a 128-channel surface electrode array at a 1 kHz sampling
rate over a 3200 s interval. Anesthetic (mixture of ketamine and
medetomidine, Toru Yanagawa, personal communication) was injected
half way through the interval. Before applying JD, the Sensor Noise
Suppression (SNS) algorithm (de Cheveigné and Simon, 2008b) was
used to remove electrode-specific activity, and the data were normal-
ized to give equal power to each electrode, PCA was applied to the
normalized data matrix, and a subset of 22 PCs with power greater
than 0.5 was selected. These 22 PCs were then submitted to JD as de-
scribed in the main text (C0 and C1 were covariance matrices of the
full data and of the post-injection interval respectively).

Two photon imaging of a cochlear hair cell

Two-photon microscopy was used to image the calcium signals in a
mouse cochlear inner hair cell, within a plane section at the base of the
cell, using a fluorescent probe introduced through a recording patch
pipette. The same pipette was used to depolarize the cell for 100 ms,
opening channels in the cell membrane to increase the intracellular
calcium. Images acquired at a 22 Hz rate were trimmed to a 105 ×
90 pixel region containing one hair cell section (about 8 μm across).
The stimulus was repeated 9 times (Culley and Ashmore, 2010, in
preparation).

The data were treated as a multichannel time series with one chan-
nel per pixel ( J = 9450). Themean of each channel signalwas removed
and the signals were scaled to equal variance and submitted to a PCA

http://www.neurotycho.org/
http://www.neurotycho.org/
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(using theMatlab function ‘eigs’ to speed the eigendecomposition of the
9450 × 9450 covariance matrix). PCs beyond the 40th were discarded,
and JD was applied to the remaining PCs rather than to the original
data. The analysis was performed in two stages, as described in the
main text.

Intrinsic optical imaging of the auditory cortex of a ferret

Data were taken from a study that used intrinsic optical imaging to
measure responses in auditory cortex of ferret to a pure tone with a
frequency that was swept from 100 to 3200 Hz in 14 s (Nelken et al.,
2008). Each sweep was repeated nine times. Images of size 76 × 63
were acquired at a rate of approximately 4.2 fps. Data were treated as
a multichannel time series with one channel per pixel (J = 4788). The
mean of each channel signal was removed and the signals were scaled
to equal variance and submitted to a PCA. PCs beyond the 58th were
discarded, and the JD analysis applied to these PCs rather than the orig-
inal data, as described in the main text.

Two photon imaging of mouse auditory cortex

Two-photon calcium imaging was used to measure the response of
neurons in the auditory cortex of mouse to acoustic stimulation
(Winkowski and Kanold, 2013). Stimuli consisted of a series of 17
amplitude-modulated pure tones with carrier frequencies spaced at
0.25 octave intervals between 4 and 64 kHz. Tonedurationwas 1 s, sinu-
soidalmodulation ratewas 5Hz, inter-onset intervalwas in the range of
6–7 s. Imaging frame rate was approximately 7 Hz, and 20 frames were
acquired for each tone, with a 6-frame pre-onset interval. Responses to
the 17 tones were concatenated, and the 113 × 128 pixel images were
treated as a time series with one channel per pixel (J = 14,464). For
each channel, the mean over the initial 6 frames of each trial was
removed (baseline correction) and the signal was scaled to equal vari-
ance for all pixels and submitted to a PCA. PCs beyond the 100th were
discarded, and JD analysis was applied to the remaining PCs rather
than the raw data. The first 10 JD components were selected and
projected back to pixel space to form “clean” data. The topographies in
Fig. 6d (top middle and right) of the main paper were obtained by
calculating the RMS of the data averaged over frames. The time courses
(Fig. 6d (bottom)) were obtained by averaging all pixels within an
8 × 8 pixel patch centered on one neuron (arrow in Fig. 6d (top right)).

Appendix 7. Failure scenarios

The failure scenarios described in the main text are illustrated here
in Fig. 8.

Study A was simulated using real data recorded from a 440-channel
MEG system in the absence of a subject. The datawere divided arbitrari-
ly into ‘epochs’, and JD was applied to emphasize repeatable activity.
The first component (Fig. 8a, left) indeed seems to be repeatable (the
mean, blue, extends well beyond±2 standard deviations of a bootstrap
resampling, gray), despite the absence of any genuine repeatable pro-
cess. This is a spurious result of over-fitting. Applying PCA and truncat-
ing to 50 PCs before applying JD attenuate this effect (right).

Study B was simulated using a ‘target’ consisting of a cycle of a
sinusoid repeated 100 times, superimposed on ‘noise’ recorded from a
160-channel MEG system in the absence of a subject, with an overall
SNR = 0.01. If the target unwisely is presented with an interstimulus
intervalmultiple of 1/50 Hz, JD selects power-line activity presentwith-
in the noise (left). If the interstimulus interval wisely is chosen to be in-
congruent with 1/50 Hz, JD selects the correct target activity (right).

Study C was simulated using the same target and noise as Study B,
but an additional random Gaussian noise was added with the same
source-to-sensor weights as the target (so that target and noise are col-
linear). In this situation, JD fails to resolve the target from this source of
noise (left). Complementing the data with additional channels with a
different target/noise ratio allows JD to extract the target (right).

Study D was simulated using the same target and noise as Study B,
but a slow ramp (linearly increasing voltage) was added to the data be-
fore dividing into epochs. Subtracting themean from each epoch causes
JD to incorrectly select the ramp as the most repeatable component
(left). If this (harmful) step is omitted, JD correctly finds the target
(right).

Study E was simulated by creating a ‘target’ consisting of a pulse
with an increasing delay across an array of 50 sensors (i.e. ‘propagating’
across the sensors, left, top). JD applied with a bandpass bias filter cen-
tered at 10 Hz resulted in a series of weights with alternating positive
and negative values (left, bottom). The resulting component waveform
seems oscillatory (right), despite the absence of any oscillatory process
within the original data.

Study F was simulated by creating a ‘target’ consisting of a burst of
random-phase sinusoidal activity occurring within the initial part of
each epoch. JD was applied using covariance matrices calculated from
the initial and final parts of the epoch, the expected outcome being to
extract the target. Instead, the first component was a glitch that
occurred by chance in the first part of one trial (left). If such glitches
are masked (by applying zero weight to high-amplitude portions in
the covariance calculation), JD correctly finds the target (right).

Study G was simulating by creating two targets, consisting of 1 or
2 cycles of a sinusoid (Fig. 8g, left). These were repeated on every
trial, and added to the same noise as Study B with SNR = 0.01. The
two targets had distinct mixingmatrices. JDwas applied to find compo-
nents that optimize the signal-to-noise ratio on the basis of repeatability
over trials. Two components are indeed found to have high scores
(Fig. 8g, right). They span the same subspace as that spanned by the
targets, but neither component matches a target.

Appendix 8. Practical considerations

Implementation

The basic algorithm can be implemented in a few lines of Matlab.
Supposing that data for two conditions to be contrasted are in matrices
‘x1’ and ‘x2’ (time × channels), the solution that maximizes activity in
‘x1’ relative to ‘x2’ is found by:

c0 ¼ x10 �x1þx20 � x2;c1 ¼ x10 �x1;
V;D½ � ¼ eig c0;c1ð Þ;V ¼ real Vð Þ;D ¼ real Dð Þ;
�;idx½ � ¼ sort diag Dð Þ;0 descend0� �

;V ¼ V :;idxð Þ;
z1 ¼ x1 �V;z2 ¼ x2 �V;

where the ‘z1’ and ‘z2’ are the matrices of JD components, the first
column of which has the highest possible power ratio of the first
condition relative to the second, and the last column the smallest.
Implementations are also available in the NoiseTools toolbox (http://
audition/ens/fr/adc/NoiseTools/) and the DSS toolbox (http://www.cis.
hut.fi/projects/dss/package/). Asymptotic space requirements are dom-
inated by the need to store covariance matrices, which is O( J2). The co-
variance matrices may be calculated chunk-by-chunk, so the full data
set does not need to fit in memory. Asymptotic runtime requirements
are dominated by the cost of eigenvalue decomposition which is O( J3)
where J is the number of channels. The dependency of the covariance
matrix calculation on number of samples T is linear.

Preprocessing

Prior to PCA it may be useful to apply the SNS algorithm
(de Cheveigné and Simon, 2008b) to remove channel-specific activity,
defined as variance uncorrelated with any other channel. Channel-
specific activity may reflect sensor noise (EEG, MEG), or brain activity
proximal to the sensor or electrode (LFP, ECoG). By definition,

http://audition/ens/fr/adc/NoiseTools/
http://audition/ens/fr/adc/NoiseTools/
http://www.cis.hut.fi/projects/dss/package/
http://www.cis.hut.fi/projects/dss/package/
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channel-specific activity does not benefit from (or contribute to) com-
ponent analysis, and it is best studied on a per-channel basis.

If some proportion of the noise variance can be suppressed before
applying JD, for example by preprocessing the data with a filter that
attenuates spectral components remote from the activity of interest, de-
grees of freedom that would have been used to remove that variance
become available to suppress other noise sources. For example if the
brain activity of interest is well below 50 Hz, convolving the data with
a squarewindowof size 1/50Hz (with zeros at 50Hz and all harmonics)
will obviate the need to project out spatial components dominated by
line power. For similar reasons it may be useful to remove slow trends
by fitting a polynomial to the raw data and subtracting the fit. It is im-
portant that such a fit be calculated on the full data before dividing
into epochs. Polynomial trends usually should not be removed on a
trial-by-trial basis (see Failure Scenario D).

In general, second order-statistics are very sensitive to outliers. Even a
single large outlier can end up dominating the largest eigenvectors of C0
and C1. This is one reason why blind source separation techniques are
often used for artifact detection and subtraction. However, when we are
really interested in the components of neural signals, sensitivity to noise
and outliers is not desired. Data should be screened for outliers prior to
calculation, and also possibly at intermediate stages because new outliers
may become apparent after strong components have been removed.

It is customary to remove the mean prior to calculation of a covari-
ance matrix or PCA, but this is not necessary, or desirable if a deviation
of themean from zero ismeaningful. For example if themeanwas set to
zero over a pre-stimulus interval (baseline correction), removing the
global mean would undo that correction.
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