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Abstract--We define a new network structure to realize a continuous version o f  the Boltzmann machine ( BM).  
Based on mean field ( M F )  theory for  continuous and multidimensional elements named "'rotors," we derive the 
corresponding M F  learning algorithm. Simulations demonstrate the learning capability o f  this network for  contin- 
uous and piecewise continuous mappings. The rotor neurons are specially suited for  cyclic problems o f  arbitrary 
dimension. 
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1. I N T R O D U C T I O N  

The classical Boltzmann machine (BM)  is a well- 
known approach to stochastic neural networks (Ack- 
ley, Hinton, & Sejnowski, 1985 ). It has been designed 
to generalize the original recurrent Hopfield model to 
a system with hidden units, which can build an internal 
representation of the desired mapping task. It has been 
used mainly for pattern completion, encoding prob- 
lems, etc. The classic BM suffers from two basic dis- 
advantages. First, it is only able to carry out binary 
mappings because the model is based on binary spin 
states; second, the learning process is very time con- 
suming because each single-learn step requires the cal- 
culation of the mean values of  the stochastic state vari- 
ables. Thus, one has to evaluate the trace over the entire 
state space, or to perform some Monte Carlo Simula- 
tion. This second disadvantage is reduced by the mean 
field (MF)  theory, where the stochastic annealing pro- 
cess is approximated by a fast deterministic algorithm 
(Peterson & Anderson, 1987). For the remaining con- 
tinuity problem we present a solution using a general- 
ization of the spin MF theory to continuous multidi- 

mensional elements, which are commonly called 
" ro to rs"  (Gisltn, Peterson, & Stdeberg, 1992). Sim- 
ilar units called phasors were presented and studied by 
Noest (1988).  These elements were complex valued 
and thus restricted to the two dimensions of the com- 
plex space and used in a Hopfield-like net structure 
without hidden elements. Similarly to this approach 
with complex-valued connection strengths, Mozer et al. 
(1992) included also two-dimensional hidden neurons. 
We present in this paper the multidimensional gener- 
alization of this model. The units we are going to use 
are called rotors because they can take values on a mul- 
tidimensional unit sphere. They naturally will be suited 
for cyclic problems or problems where directions in 
two, three, or more dimensions come in. 

In Section 2 we introduce the classic BM and rotor 
neurons. We present our multidimensional continu- 
ous model in Section 3. In Section 4 we report, 
among other simulations, results on piecewise con- 
tinuous mappings.  More detailed calculations on the 
convergence properties of  the model are shown in the 
Appendix. 
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ample. We are very grateful to Ingrid Gabler for supplying the ex- 
perimental data for this same example. 
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2. UNDERLYING THEORY 

2.1. The Classic BM 

The BM consists of  binary stochastic units Si E { - 1, 
1 }, i = 1 . . .  n. They may be connected together with 
symmetr ic  connection strengths w u = wji .  The units 
are divided into visible and hidden units. The hidden 
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units have no connection to the outside world. The 
visible units sometimes are further separated into in- 
put and output units. We label the possible states of 
the hidden and visible units by h and v, respectively. 
We use the same energy function as in the original 
Hopfield model, 

1 __ ~ vh uh 
E~h 2 0 W#Si Sj . (1) 

The name Boltzmann machine comes from the 
fact that the stationary distribution of state variables 
should be given by the Bol tzmann-Gibbs  distribu- 
tion, 

P~h = e BEoh/Z ( 2 ) 

Z =  ~'~e ~e0h (3) 
oh 

where Z is the partition function of the system and/3 
= 1 /T  is the inverse temperature. The index oh ex- 
presses that the sum is to be performed over the entire 
state space. To guarantee a Boltzmann distribution of 
the state variables, one should insist on the principle of 
detailed balance for the transition probabilities W ( v h  
---' o ' h '  ) from a state oh to a different state v 'h '. In fact, 
this principle is satisfied by the so-called Glauber dy- 
namic 

w,,  ,,, st n (  wo,0) ,4, 

Here we want to mention that to write this expression 
in this simple form the symmetry of the connection 
strengths has been used. The system is updated many 
times according to eqn (4) until it converges to a sta- 
tionary distribution. That is one reason why the non- 
deterministic version of the BM is considered to be 
very slow. 

2.1.1. Annealing. The most interesting mathematical 
property of the Boltzmann distribution is that at low 
temperatures it favors the states with low energy. In- 
dependent of the initial conditions and the path, the 
system is very likely to be found at the low-energy 
states. In the limit of zero temperature the probability 
to be in the global minimum is 1. The obstacle is that 
at low temperature the stationary distribution is reached 
very slowly in comparison to high temperatures. There- 
fore, it is common to use the annealing procedure, start- 
ing at a high temperature and decreasing it with some 
appropriate temperature schedule. 

2.1.2. Bol tzmann Learning. The basic idea of the BM 
is to introduce constraints by keeping some of the vis- 

ible units fixed and letting the rest of the system relax 
to a state of low energy. The learning process should 
find the proper energy function where the patterns to 
be learned are represented by the most probable states 
at low temperature. In other words, the learning should 
adapt the connections w o to give the visible units some 
desired probability distribution. In contrast to the Hop- 
field model, the system may use some internal repre- 
sentation of the visible patterns in the hidden units. The 
learning rule is a gradient descent method. The cross 
entropy is used as cost function. In this case it measures 
the difference between some desired probability distri- 
bution R~, and the actual distribution P,, of the visible 
units 

H = ~, R~log R,, ,, p--~. ( 5 )  

Here the probability distribution of the visible units, 
irrespective of the state h of the hidden units, is given 
by 

P, =ZP~h.  (6) 
h 

The resulting learning rule 

OH 
mWii  = - - ~  ~ - -  = ?~]~[ (siSj)clampe d -- (s is j ) free  ] (7) c,w~i 

involves only the mean values of the correlation of 
the state variables. The first term is the thermal mean 
value averaged over all presented patterns while 
keeping the visible units clamped. The second term 
is the thermal mean of the completely free running 
system. These two expressions can be understood as 
a Hebb and an anti-Hebb term. But calculating the 
accurate thermal average is even more time consum- 
ing than reaching the equilibrium distribution, so 
here the mean field approximation comes into con- 
sideration. 

2.2. Mean Field Approximation 

The aim of the MF approximation is to replace the 
time consuming stochastic procedure by a determin- 
istic algorithm to calculate the desired mean values. 
There are different ways of deriving the correspond- 
ing equations. In the MF approximation itself, it is 
assumed that 

( tanh(13~woSj )>"~tanh(13~i  wii(Sj)) • (8) 

That way one arrives at a set of equations for the mean 
values of the state variables, 
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(Si) = tanh( fl ~ wo(Sj) ) • (9) 

The solution of this equations can be accomplished by 
iterative updating. In fact, these equations are the 
steady state solution of the corresponding partial dif- 
ferential equation of first order. 

d (S, )=-(S~)+tanh(13~,wij (Sj) )  
dt . j " (10) 

The iterative updating can be regarded as a discrete 
integration of this equation with time scale one. For 
this equation, Hopfield gives a Liapunov function that 
guarantees the convergence of the solution by demand- 
ing the connection strengths to be symmetric. A dif- 
ferent way to derive eqn (9) is known as the saddle- 
point approximation. We will return to it in the next 
section. While applying the learning rule (7),  one fur- 
ther approximation is used. The order of correlation and 
thermal averaging is changed, 

(S,~) ~ (S,)(~). (11) 

At the end the resulting MF equations give a determin- 
istic algorithm implementing the basic concept of 
global search of minimum energy in the recall phase. 

2.3. Rotors 

There are different approaches to generalizing the MF 
formalism to continuous and multidimensional units. 
Peterson (1987) first considered the case of real-valued 
but multidimensional units called "rotors"  for a gen- 
eral energy function. Noest (1988) studied the Hopfield 
net in the case of imaginary-valued elements called 
"phasors"  that were thus restricted to the two-dimen- 
sional complex space. Mozer et al. (1992 and related 
works) applied phasors in network models including 
hidden units. We want to generalize the deterministic 
discrete BM to the continuous multidimensional case 
using this time Peterson rotors with a quadratic energy 
function. We also focus on rotors because one may be 
interested quite naturally in three- or even higher-di- 
mensional directional units. Peterson and Anderson 
(1987) introduced rotors in a very general manner. 
They are defined as multidimensional continuous unit 
vectors 

S, E 9]d; IS, I = 1 ; i =  1 . . . n .  (12) 

He considers the task of minimizing an energy function 
E(Sj . . .  S,). The starting point for the MF theory is 
the so-called partition function. The corresponding 
function Z for rotors is defined as 

Z = f e ~e(s~ . .  s , , ) d S  1 . . . dS,,. (13) 

The integration here is to be performed over the n d- 
dimensional unit spheres. To realize the desired ap- 
proximation, first introduce new mean field variables 
Ui and V~ and evaluate the integrals in S~. The new 
mean field variables are not restricted to the unit sphere. 
That way the state space I Si] = 1 is replaced by a 
virtual space. In this virtual space the states are not 
restricted anymore to the unit sphere. On these states 
of course a different effective potential applies. It ap- 
pears in the exponent and is different from the original 
energy for nonzero temperature, 

Z ~  f e a e " d V l . . . d V . d U i . . . d U .  (14) 

Eeff = E ( V ~ . . . V . )  - T~Vi'Ui  A- T ~  G(IU, I). (15) 
i i 

G is defined by using the modified Bessel functions I,,: 

G(u) = log l~d 2 ) / 2 ( U )  - -  ~ log(u). (16) 

The variables V ° at the saddle point of the effective 
potential can be understood as the mean of Si. In the 
T---, 0 limit (see Appendix) 

(Si)r~o = V/0. (17) 

The saddle points V ° and U ° are given by the equa- 
tions 

1 
u o = _ ~ V v , E (  v ° . . - v  o) (18) 

v o 
v ° = F(IU ° [) ~- f(U°). (19) 

I U ° l  

F is the derivative of  G and has sigmoid shape. These 
equations are the corresponding generalization of  the 
MF eqn (9)  for the continuous multidimensional 
case. 

3. CONTINUOUS R O T O R  BM 

We use rotors as neurons in the BM to facilitate con- 
tinuous valued mapping. That way we get multidimen- 
sional units and we have to expand the formulation of 
the BM to the multidimensional case. We have to de- 
fine a proper energy function for the relaxation dy- 
namic and to revise the derivation of the BM learning 
rule. 
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3.1. Model Description 

The structure is analogous to the original BM with rotor 
neurons. We allow independent neuron interaction in 
each direction, 

1 1 
E = - = Z s j ,  = - = Z s ,  . w , , - s j .  (2O) 

2 okt z 0 

The indexes i, j = 1 . .. n enumerate the neurons and 
k, I = 1 . . .  d the different dimensions in the first no- 
tation. The second notation is used to simplify expres- 
sions. To guarantee convergence of the dynamics we 
demand symmetry in i, j and simultaneously in k, l, 
that is, W~kjt = Wj,k. Equations (18) and (19) now 
read: 

U~ = - I ~ W 0 " V  j (21) 

Vi = f(U~). (22) 

This leads to the MF equations for the continuous rotor 
BM. In one dimension they reduce to the original MF 
eqn (9) of the discrete BM. Once again, these equations 
can be viewed as the fixed-point of the corresponding 
partial differential equation of first order, similar to eqn 
(10). In the Appendix we present these continuous 
time equations and a Liapunov function that guarantees 
the convergence to the fixed-point eqns (21 ) and ( 22 ). 
The convergence of the iterative algorithm that solves 
this MF equation can be proved for finite temperatures 
and bounded connection strength (21IWII /Td  < 1). 
Nonetheless, in our simulations the system converges 
in a few iteration steps whatever connection strength 
or temperature we choose, even with W~kjt not symmet- 
ric in k, l. 

3.2. Learning Rule 

We want to expand the derivation of the BM to the 
multidimensional continuous case. Basically, we have 
to substitute the trace over the binary state space in the 
definitions (2) ,  (3),  (5) ,  and (6) by a trace over the 
continuous space, 

f nas, (23) 
i 

whereby the space { S~ } of the hidden units, the space 
{ S~ } of the visible units, and the conjunct space of all 
units { S, .ho } have to be properly considered. This leads 
to the following definitions: 

P{S,. ~ } = e-aelsb'ol/Z (24) 

P{SY} f I I  h h~ = dS, PlS~ } (25) 
i 

H = f I-I dS~R{Sy }log R{S~ }/P{S~ }. 
i 

(26) 

The partition function Z is given by eqn (13).  After 
some calculations we obtain the gradient of the rel- 
ative entropy H with respect to the connection 
strengths, 

OH 

d 
(27) 

= (SikSjl P { S i  } 
OW~k~l J 

- (SikSj , )P{S~ }). (28) 

The brackets denote the thermal average defined here 
a s  

( ( 2 9 )  
i 

This thermal average is named "f ree"  because the 
trace is performed over all visible and hidden units 
states and there is no constraint on any unit. This is in 
contrast to the "c lamped" thermal average where the 
visible units are kept fixed: 

( )clamped = flqdS, P{S  l/P{S } 
i 

= f l-lds? PtS?lSV}. (30) 
i 

Inserting eqn (28) in eqn (27) and using eqns (29) and 
(30) we get an analog learning rule 

A W i k f l  = 7~t~[ (SikSj l )c lamped --  (S i kg j l ) f r ee] .  ( 3 1 )  

The bar denotes the average over the desired distribu- 
tion R (i.e., the average over the learning patterns). 
Again, with the approximation analog to eqn ( 11 ) and 
equality (17),  we write the MF learning rule, 

A W ,  kj, = rll3[ (VikVj,)a~mpea - (VikVj,)fr~e]. (32) 

Because we are going to apply the continuous BM to 
the function approximation task, we will use the ob- 
vious modification done by Hopfield (1987) where the 
visible units are further separated into input and output 
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units. The input units lead to an external field and need 
not be restricted to the normalization condition (12) .  
Nevertheless, we will be using, for the sake of sim- 
plicity in some cases, normalized inputs. 

4. S IMULATIONS 

The first aim of  the simulation was to prove the feasi- 
bility of  the proposed BM. In some preliminary exper- 
iments we confirmed that eqns (21) and (22) converge 
for every temperature in a few update cycles, even with 
connections that are not symmetric in k, l. At high tem- 
perature the rotor values are moving around the origin 
of  their state space. While decreasing the temperature 
the norm of  the rotors increases until some freezing 
temperature is reached. There [Vi I ~ 1 and the values 
remain fixed. We observed in the experiments that the 
freezing temperature is correlated with the connection 
strengths (llWll/T~ozo is of  order one).  This gives us a 
guideline for selecting the temperature schedule. Start- 
ing just above the freezing point we decrease the tem- 
perature slowly. In our experiments we start at tem- 
perature 1.0 and decrease it with factor 0.85 until we 
reach 0.001. 

4.1. Coding 

We have to use at least a two-dimensional rotor to im- 
plement a continuous mapping. Given the normaliza- 
tion condition (12) for the output and hidden units, we 
need one (d + 1 )-dimensional units to code d-dimen- 
sional signals at the output. For any n-dimensional sig- 
nal one is free to chose between n two-dimensional unit 
or a single (n + 1 )-dimensional rotor. We are free in 
selecting the sign of the coordinate that is used for the 
normalization. We will choose in all our experiments 
a positive sign. This is, of  course, arbitrary and makes 
no difference either to the desired mapping itself, or to 
the ability of  the net to approximate it. We point out 
that the formulation of the continuous rotor BM can be 
readily rewritten for a combination of rotors with dif- 
ferent dimensionality. 

We are going to see in Section 4.3 that three-dimen- 
sional units are better suited for a mapping in the three- 
dimensional space, rather than two two-dimensional 
units that represent the two angles of  polar coordinates 
in the three-dimensional space. 

In preliminary experiments we used two-dimen- 
sional units. To verify the learning algorithm we tested 
as a discrete mapping the XOR problem. With similar 
parameters we came to the same result as in the original 
work of Peterson (1987).  Furthermore, the capacity of  
learning simple continuous mapping like the one-di- 
mensional sine function has been checked. The net 
trained with 20 sample points and solved the task nearly 
perfectly (0.9% error).  

4.2. Piecewise Continuous Mapping 

We want to explain and demonstrate the inherent abil- 
ity of  the system to perform piecewise continuous 
maps. Discontinuity occurs when small changes in the 
input values lead to drastic changes of the output to- 
wards which the system relaxes. Remember  that be- 
cause there exists a Liapunov function for the relaxa- 
tion at a fixed temperature, the fixed-points of  the MF 
equations can be understood as the bottoms of the val- 
leys of  the energy function. The fixed-point iteration to 
calculate these solutions is equivalent to making a gra- 
dient descent on that energy landscape with the step 
size 1.0. (see Appendix).  The inputs to the net are kept 
fixed during the relaxation. They can be understood as 
a constant external field that parameterizes the energy 
surface. Thus, the energy surface depends continuously 
on the inputs. Starting always with the same output and 
hidden configuration, the relaxation always will relax 
to the same fixed-point. If  a small change in the input 
occurs, the relaxation point is likely to change also in 
a small amount, unless the energy surface is changed 
by the different input in such a way that the same start- 
ing point of  the relaxation occurs to lie in another basin 
of  attraction. In that case, the fixed-point, towards 
which the system converges, may differ considerably 
from the one corresponding to slightly different input. 
Thus, we expect the system to perform piecewise con- 
tinuous mappings. And, in fact, in simulations we ob- 
serve a tendency to perform piecewise continuous map- 
pings. The location of the discontinuity can even be 
trained, as demonstrated in the example in Figure 1. An 
arbitrary discontinuous one-dimensional mapping was 
trained [here we used as target function f ( x )  = 

s i g ( x ) e x p ( - I x l ) ] .  The location of the discontinuity 
is very sensitive with respect to the connection 
strengths. This explains the peaks of  the learning pro- 
cess in Figure 2. To compensate for these peaks we 
used the learning constant schedule suggested by Silva 
and Almeida (1990).  All in all, this kind of recurrent 
net has the ability to perform both continuous and dis- 
continuous mappings. Therefore, we expect good per- 
formance, especially in piecewise continuous mapping. 

4.3. "Cornered Rat" Control Problem 

To test ability of  performing piecewise continuous 
mappings, we use training data from a differential game 
called "cornered ra t"  proposed by Breakwell (1977). 
We do not pretend to solve the mathematical problem 
itself. We just use the numerical results as training data 
for our net. The game consists in the following: Imag- 
ine a rat trying to evade a cat by running to one of two 
holes in a rectangular field. More generally, the rat tries 
to maximize its lifetime. In other words, if the rat 
knows that it won ' t  reach one of the two holes, it runs 
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FIGURE 1. A rotor BM with five two-dimensional units (three hidden, one input, and one output unit) was trained to learn this 
piecewise continuous map. X and Y denote one dimension of the input and output unit, respectively. The second dimension is 
used for the normalization condition (12). 

in the direct ion where the cat wil l  need the m a x i m u m  
t ime to reach it. (This  will  be one of  the comers . )  As-  
suming now that both the cat and the rat choose  in an 
opt imal  way,  it is poss ib le  to show that both cat and rat 
wil l  run on straight  lines. Depend ing  on its actual  po-  

si t ion,  the  rat  wi l l  c h o o s e  va r ious  d i r ec t i ons  ( F i g u r e  3.) .  

W e  n e e d  a con t ro l  s igna l  ( a n g l e )  fo r  the  rat a c c o r d i n g  

to its pos i t ion .  Th is  has  b e e n  ca l cu l a t ed  ( in  G a b l e r  et  

al., 1993)  by  the  so ca l l ed  " s u r v i v a l  set  a l g o r i t h m "  

and  is f o u n d  to be  a p i e c e w i s e  d i s c o n t i n u o u s  m a p p i n g  

e r r o r  

1 . 1 0  

0,90 

0.80 
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0.60 

0.50 

0.40 

0.30 

0.20 

0.10 

0.00 

I I I I 

m 

m 

I I I I 
0.00 100.00 200.00 300.00 400.00 

training 
gencr~Jizadon 

e p o c h s  

FIGURE 2. Leaming process of the rotor BM for the function of Figure 1. It was trained with 50 sample points and reached an 
error of 2.0%. 
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I I I I 

L I I I i I X 
0.00 2.00 4.00 6.00 8.00 10.00 

FIGURE 3. Gabler et al. (1993) calculated t races of the rat. Start ing f rom dif ferent locat ions the rat tr ies to evade the cat  sitt ing 
at start  posi t ion (10, 3). The rat holes are located at (0, 6) and (6, 0). 

from two dimensions like the one shown in Figure 4. 
Although this optimal control problem can be solved 
numerically (as done by Gabler et al., 1993 ), it is com- 
putationally intensive. It would be useful to generate 
the desired mapping first with a few sampling points 
and to learn this piecewise discontinuous mapping with 
the proposed BM. We mention that the real task is the 
calculation of both control signals for the rat and the 

cat. We limited ourselves to the rat control signal and 
a single cat position. 

We used four hidden two-dimensional rotors, two 
input rotors for the position coordinates of the rat, and 
one output for the angle. The range of input coordinates 
{ 0 . 0 . . .  10.0, 0 . 0 . . .  6.0 } was scaled to ( -  1 . 0 . . .  1.0, 

- 1 . 0 . . .  1.0). The second dimension of each input unit 
was used to fulfill the normalization condition (12).  
The output unit indicates directly the target angle. As 
training data we used the 13 x 21 sample points 
showed in Figure 4. After 5000 epochs the error de- 

360 ° 

360 ° 

0 o 

(0,0 0 ° 

~ ( 1 0 , 6 )  ( 0 , 0 ) ~  (10,6) 
(0,6) "q'-- 

FIGURE 4. Gabler et al. (1993) calculated opt imal  control  di- (0,6) 
rect ions of the rat as a mapping f rom two  d imension to one. 
Height  represents the angle of the rat traces. Arrows indicate FIGURE 5. Mapping produced by the cont inuous BM after 
rat holes. 5000 leaming epochs.  
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error ~ result _.~....--"~ [ 
angle angle ~ _ . ~  
360o 360 ° 

0 o 0 ° 

(0 0 (0, 

~ (10,6) (10,6) 

(0,6) ~ (0,6) 

FIGURE 6. The remaining average angular error continuous FIGURE 7. Mapping produced by a MLP with seven hidden 
BM is 5.48 °. neurons after 6000 epochs of learning. 

creased down to 0.1, corresponding to an angle error 
of 5.48 ° ( see Figure 6). Comparing the target mapping 
in Figure 4 to the net result after training in Figure 5, 
the correspondence of the discontinuity is obvious. In 
comparison, a multilayer perceptron (MLP) with seven 
hidden neurons and sinusoidal output reached (after 
6000 epochs of on-line gradient descent without mo- 
mentum term) an average error of 16.28 ° . Based on the 
same data we also tried a feedforward net with radial 
basis functions using "partitioning to one" (Moody & 
Darken, 1989) and a linear output. We got the best 
result of 9.19 ° average error with eight hidden neurons 
by initializing the weights with K-means-clustering and 
K-nearest-neighbor algorithm following Moody and 
Darken (1990) and Duda and Hart ( 1973 ). Comparing 
Figure 5 and Figure 7, the difficulty of the MLP to 
produce discontinuity can be easily recognized, 
whereas the BM reproduced the desired edges quite 
well. 

4.4. Three -Dimens iona l  Mapping  

To verify the advantage of the multidimensional model 
with respect to the two-dimensional units, we want to 
show a three-dimensional example. Imagine now the 
analog control problem of the "cornered rat" in three 
dimensions. Analogous to the two holes in the rectangle 
for the rat, there are now for a "dove"  two corners to 
escape in a three-dimensional cube. The corners are 
located at ( - 1, - 1, - 1 ) and ( + 1, + 1, + 1 ). Unlike the 
"cornered rat" example, this is an artificial problem 
where we are only interested in the different perfor- 
mances of three- and two-dimensional rotors. There- 
fore, we choose a simple separation surface. The dove's 
target control angle points to the corner, which is less 
distant from the actual position of the dove. 

The nets are trained to learn the two angles of the 
polar coordinates representation of the target angle. A 
two-dimensional rotor net uses for this two output 

units. A three-dimensional rotor net needs only one out- 
put unit. The three input dimensions ( "dove"  position) 
were coded in the case of the two-dimensional net in 
three input units and in the case of the three-dimen- 
sional net in one three-dimensional input unit. The nor- 
malization condition for the inputs was not considered. 
(Remember that the input units in the original BM do 
not have to be binary values.) In the two-dimensional 
net the orthogonal coordinates at the three input units 
were set to zero. Of course, this leads to a slightly dif- 
ferent topology. But experiments with normalized input 
units showed no substantially different performance. 
The number of hidden rotor neurons was selected to 
give the same number of learning parameters (about 
80). In the three-dimensional rotor net we used four 
hidden units and in the two-dimensional we used five 
hidden units. The training and generalization sets con- 
tained 100 points each. The error decreased down to 
about 8.5 ° and to 15 ° for the three- and for the two- 
dimensional cases, respectively. The generalization er- 

(+1,+1,+1) 

(-1,-1,-1) 

FIGURE 8. The target directions to be leamed point to two 
opposRe corners of a cube. The separation (shadowed) sur- 
face is defined by the points with equal distance to the cor- 
nere. 
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FIGURE 9. Training and generalization error for a three and a two dimensional rotor net. 

ror differs considerably (14 ° and 41 °) (see Figure 9).  
This suggests that the three-dimensional rotors capture 
the desired relation much better because the inherent 
structure fits this problem. Thus, whenever a direction 
in an n-dimensional (n > 2) space is searched, we 
expect that an n-dimensional rotor net will solve the 
mapping task better than any net with two-dimensional 
units. 

5. CONCLUSION 

The purpose of this work was the formulation of a con- 
tinuous version of the classical BM. Therefore, we used 
the MF theory for rotor neurons. We demonstrated an- 
alytically some convergence properties of  the resulting 
rotor dynamic, and derived the appropriate mean MF 
learning algorithm in analogy to the original BM. This 
way, we also expanded the models of  two-dimensional 
(or complex-valued) units to arbitrary dimension. We 
illustrated the convergence of learning in some numer- 
ical experiments. We demonstrated the ability to per- 
form piecewise continuous mappings, which represents 
a difficult task for nonrecursive networks. The multi- 
dimensional extension was found advantageous com- 
pared to two-dimensional units in the case of  mapping 
into three-dimensional directions. 
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APPENDIX 

Saddle-Point and MF Variables 

We demonstrate first why the variables V~ can be understood as the 
mean of Si. Using the definition of the thermal average and perform- 
ing the same procedure that leads to eqn (14) ,  we write 

1 I" 
(S,)r-o = lim | I-I dS~S,e ~E(St.. m S ~  ~ 

~ Z d 
a 

f FL dV,  1~ dUbVie-Becff 
= lim (A.1) 

~ f l-L dV~ IL  dU~  ~ec, " 
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Now the exponent is expanded around the saddle points U, .° and V~ ) 
of  the effective energy. The zero order of  the expansion is a constant 
in the integral and appears both in the nominator and denominator; 
thus, it cancels. The first order is zero because we expand around the 
saddle point where VE ,  ff = 0. The second order gives rise to a 
multidimensional Gaussian where the variance scales with x / ~ .  In 
the limit/3 ---} 0% this leads to Dirac delta functions, 

f IL  dVo6(V. - V o) l-'b. dUb6(Uh -- U°)V, 

(S,)r~o - f [L. dVof(V., - V o) l-L. dUh3(Uh -- U °) 

= V o 
(A.2)  

We neglect higher-order terms. Let us point out that in the n ~ oo 
limit, a similar argument holds. For that it has to be verified that the 
exponent scales with n for large n as it does in the present case 
with B. 

Liapunov Function 

Now we show some convergence properties of  the proposed MF 
equation following the same lines as Hopfield. Equations (21) and 
(22) obviously give the fixed-point of  the following partial differ- 
ential equation: 

1 
dU---Ldt = - U ,  + ~ ~ W 0. f(Uj).  (A.3)  

To demonstrate that the dynamic converges to this fixed-point, we 
have to show that there exists some Liapunov function 

L = - - ~  /~j vi" wt)''Vj ~- ~'~i f - ' (V)-dV (A.4)  

where f -i = V / I V { F  l(IV 1) exists, because F '  > 0 everywhere. 
The path integrals can be performed over an arbitrary curve because 
the integrand has zero rotation. To verify that L is a Liapunov func- 
tion, we have to show that its time derivative is negative: 

at Y--~t w ° v J  - f - ' ( V ' )  = 
i 

dV~ dU~ ~ _ _ ~ . V v f r  ~ dV i 
~'i dt dt - o at "-~-t < 0. (A.5)  

The inequality is valid if Vv~f J(V~) is positive definite. Note that 
in eqn (A.5) the symmetry of the connection strengths was needed. 
With the weaker condition of detailed balance the Liapunov char- 
acteristic was proved for the original Hopfield model by Schtirmann 
(1989).  

To prove that the for th-rank tensor  is posi t ive definite we use 
the theorem of  Gershgor in .  To avoid misunder s t and ing ,  we use 
the comple te  index notation.  We abbreviate Vi = I V~I and G 
= F-~(IV~I): 

h}~ Ofi,~ ~,G V~kV~tr~( G ) 
0Vj, = 6jr V, V~ - E + G'  . (A.6) 

First we show that the diagonal elements h~ are positive: 

=E 1-v~/ +Wa'~-° (A.7)  

L. Parra and G. Deco 

This holds because G and G '  are positive for positive arguments. 
Furthermore, we have to show that 

hi~ > ~[~ [h}~l. (A.8) 
jl*ik 

The right side can be rewritten as 

Iv, I G G, I = v~ - v ,  + ~ Iv, I. (m.9) 

Considering eqns (A.7) and (A.9) ,  we have to show 

v, v~ -~+ 

v~ - ~ + o '  I~,E >o, 

and 

( /1°o1  I V , , l  - ~ + a '  - - ~ +  X IV , , I  < . 
, . ~  I V,, I 

As 

(A.10) 

( A . l l )  

G 
- - -  + G'  < 0 (A .12 )  

v, 

holds, eqn (A.I l ) is equivalent to 

( G  ) Vi (A.13) 
~ - a '  ~ l V ,  l < a l w , ,  I .  

Because for any vector I V~ I - Zt I Vll <- I V I holds, it is enough to 
verify 

(-~i - G')Vi < G" (A.14) 

This last holds by definition because 

0 < G'Vs. (A.15) 

Convergence of the Dynamic 

We show now the local convergence of the dynamic defined by the 
MF eqns (21) and (22):  

V , ( t +  1 ) =  f ( _ l y . w ~ / v j ( t ) ~ .  
t j  / (A.16) 

We remark that this iterative update algorithm for solving eqns (21 ) 
and (22) can also be viewed as discrete time integration of eqn (35) 
with time scale At = I. Under conditions of finite temperature and 
properly bounded connection weights, the local convergence of the 
algorithm can be shown explicitly. According to the Banach fixed- 
point theorem, local convergence is guaranteed if 
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< 1 (A.17) 
0Vj, 

o:,r= =ll v,.W I 
~v,, = ~  (A.18) 

The forth-rank tensor V v f  -= g can be written as eqn (A.6) substi- 
tuting V by U and G by F.  Because the corresponding conditions 
(A.12) and (A.15) still hold, the inequalities (A.7) and (A.8) are 
also valid for this tensor. It is thus positive definite, with positive 
eigenvalues 

Now we can bound the norm as 

I[Vvf[[ = maxik[kl,[ <--maxik(g~ + Y. [ g ~ [ )  
\ j l*ik 

< maxik(2g~[) (A.20) 

= 2 max,, + U"'~ - ~ + F' 

~ 2 maxl + U~ + F '  = ~  (A.21) 

where 11d is the maximal slope of  F at the zero point. At the end we 
get from extn (A. 18) condition for the local convergence: 

wtl iw[12o, = Vvf' <-- llVvfll <--=llWl[ < I. (A.22) 


