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Empirical research in the last decade revealed that astrocytes can respond to
neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which
modulate synaptic transmission and neuronal excitability. This discovery changed our basic
understanding of brain function and provided new perspectives for how astrocytes can
participate not only to information processing, but also to the genesis of brain disorders,
such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures
that can arise focally at restricted areas and propagate throughout the brain. Studies in
brain slice models suggest that astrocytes contribute to epileptiform activity by increasing
neuronal excitability through a Ca2+-dependent release of glutamate. The underlying
mechanism remains, however, unclear. In this study, we implemented a parsimonious
network model of neurons and astrocytes. The model consists of excitatory and inhibitory
neurons described by Izhikevich’s neuron dynamics. The experimentally observed Ca2+
change in astrocytes in response to neuronal activity was modeled with linear equations.
We considered that glutamate is released from astrocytes above certain intracellular Ca2+
concentrations thus providing a non-linear positive feedback signal to neurons. Propagating
seizure-like ictal discharges (IDs) were reliably evoked in our computational model by
repeatedly exciting a small area of the network, which replicates experimental results
in a slice model of focal ID in entorhinal cortex. We found that the threshold of focal
ID generation was lowered when an excitatory feedback-loop between astrocytes and
neurons was included. Simulations show that astrocytes can contribute to ID generation
by directly affecting the excitatory/inhibitory balance of the neuronal network. Our model
can be used to obtain mechanistic insights into the distinct contributions of the different
signaling pathways to the generation and propagation of focal IDs.
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INTRODUCTION
The intracellular Ca2+ elevations occurring in cultured astrocytes
in response to a glutamate challenge (Cornell-Bell et al., 1990)
was the initial observation that hinted at the existence of a form
of excitability in astrocytes based on cytosolic Ca2+ concentration
changes. A few years later, Ca2+ elevations in astrocytes from both
cell cultures (Parpura et al., 1994) and brain slices (Pasti et al.,
1997) were observed to result in Ca2+ increases in nearby neurons
mediated by astrocytic glutamate. Considering that astrocytes
occupy non-overlapping spatial territories (Bushong et al., 2002;
Halassa et al., 2007b) and that the processes of a single astrocyte
can contact hundreds of synapses (Ventura and Harris, 1999), it
was suggested that astrocyte-to-neuron communication may play
a fundamental functional role in the brain. It was also found
that astrocytes establish extensive contacts with cerebral blood
vessels (Simard et al., 2003), which added further complexity to
the functional role of neuron-to-astrocyte signaling. This neuron-
astrocyte-blood-vessel signaling pathway was revealed to be cen-
tral in neurovascular coupling, the process by which episodes of

intense neuronal activity at restricted brain regions trigger local
increases in cerebral blood flow to satisfy the energy demand of
active neurons (Zonta et al., 2003; Mulligan and MacVicar, 2004;
Gordon et al., 2008).

These pioneering results lead to the idea that astrocytes and
neurons establish a bidirectional communication in the brain
which may play fundamental roles in the modulation of synaptic
transmission and plasticity (Carmignoto, 2000; Haydon, 2001).

Over the last decade numerous studies provided evidence for
the ability of astrocytes to listen and talk to the synapse by exert-
ing both excitatory and inhibitory actions on neurons (Araque
et al., 1999; Brockhaus and Deitmer, 2002; Zhang et al., 2003;
Pascual et al., 2005; Panatier et al., 2006; Serrano et al., 2006;
Jourdain et al., 2007; Perea and Araque, 2007). These studies rev-
olutionized our view of how the brain works. The processing
of sensory information in the brain, which has been for many
years considered to be based exclusively on neuronal communi-
cation, is now viewed as a product of the dynamic signals that
neurons and astrocytes constantly exchange in the brain network.
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Such a bidirectional communication between neurons and astro-
cytes was conceptualized in the tripartite synapses in which the
astrocyte composes with the pre-synaptic terminal and the post-
synaptic target neuron, a third functional element of the synapse
(Araque et al., 1999; Carmignoto, 2000; Halassa et al., 2007a;
Perea et al., 2009).

The discovery that astrocytes are crucially involved in nor-
mal brain function raised the intriguing possibility that these
cells may be involved also in brain dysfunction. The observa-
tion that glutamate released by astrocytes evokes episodes of
synchronous activity in small groups of nearby neurons (Fellin
et al., 2004, 2006), was the first clue suggesting that gliotransmis-
sion represent a relevant non-neuronal mechanism for neuronal
synchrony, which may ultimately favor the generation of focal
epileptiform activity (Kang et al., 2005; Tian et al., 2005). A
new experimental protocol was recently developed by our group
in rat enthorinal cortex (EC) slices in order to reproduce the
spatial and temporal features of focal epileptiform discharges
(Gomez-Gonzalo et al., 2010; Losi et al., 2010). In this model,
a pharmacological stimulation of neurons from a restricted cor-
tical region induces a propagating seizure-like ictal discharge
(ID). The ability to emulate an epileptogenic focus allows us to
study the early cellular events that take place during the gen-
eration of epileptiform activity as it arises at a focal site and
propagates to the surrounding brain tissue. By using this exper-
imental protocol we recently provided evidence that neurons
engage astrocytes into an excitatory loop that pushes the neuronal
network toward the ID generation threshold (Gomez-Gonzalo
et al., 2010).

There are currently many computational models of seizures
generation, development and cessation (Pitkänen et al., 2006).
The level of description ranges from mean field models (Wendling
et al., 2002; Suffczynski et al., 2004) to biophysically detailed
models (Destexhe, 1998; Bazhenov et al., 2004; Traub et al.,
2005). We used here a simplified approach in the description
of the dynamics of single neurons and astrocytes. With this
simplified dynamics we implemented a computational network
model that allowed us to investigate the network mechanisms
of focal ID generation and the role of astrocytes at the onset
of the ID.

We found that the positive feedback provided by the astrocytes
influences the dynamics of the system and favors the generation of
epileptiform activities. The computational model quantitatively
reproduces the spatial and temporal features of ID generation and
propagation and provides mechanistic insights into the astrocyte
contribution.

METHODS
NEURON MODEL
The computational model aims to reproduce the behavior of
a brain network that in response to NMDA pulse stimulation
generates a focal ID (Losi et al., 2010). The network consists
of 320 excitatory and 80 inhibitory neurons randomly disposed
and synaptically connected in a 2D configuration. As in our
previous work (Reato et al., 2010), we used Izhikevich’s model
(Izhikevich, 2003) to describe the dynamics of single neurons.
Briefly, the voltage dynamics of single neurons is characterized

by four parameters: a, b, c, d as follows:

dv

dt
= 0.04v2 + 5v + 140− u+ I = f (v, u)+ I

du

dt
= a (bv − u) (1)

With a reset of the dynamic variables u, v when a spike is
generated:

if v ≥ 50 mV, then

{
v← c
u← u+ d

(2)

The choice of values for the four parameters defines different
spiking behaviors. The parameters were chosen to reproduce the
behavior of a regular spiking neuron for excitatory neurons (a =
0.02, b = 0.2, c = −65, d = 10) and of a fast spiking neuron for
inhibitory neurons (a = 0.2, b = 0.26, c = −65, d = 0.5). The
variable I represents the sum of the synaptic current and the
external stimulation.

The synaptic currents mimic AMPA, NMDA, GABAA, and
GABAB receptor activation following (Izhikevich and Edelman,
2008). Briefly, the synaptic conductances are described by first-

order linear kinetics, dgx
dt = − gx

τx
+∑

j sjδ
(
t − tf

)
(where x =

AMPA, NMDA, GABAA, GABAB) with, τAMPA = 1 ms, τNMDA =
2000 ms, τGABAA = 6 ms, τGABAB = 150 ms. Every time a pre-
synaptic neuron m fires an action potential the conductance of the
post-synaptic neurons increases instantaneously by s = sexc and
s = sinh for pre-synaptic excitatory or inhibitory neurons respec-
tively (sexc = 0.001, sinh = 0.01). The ratio of NMDA to AMPA
receptors was set to be uniform at a value of 2, while GABAB to
GABAA equal to 0.3 (sexc = 0.002 for NMDA and sinh = 0.003 for
GABAB). The synaptic current of a post-synaptic neuron is then
given by:

Isyn = Iexc + Iinh

Iexc = gAMPA (vexc − v)

+ gNMDA
[(v + 80) /60]2

1+ [(v + 80) /60]2 (vexc − v) (3)

Iinh = gGABAA (vinh − v)+ gGABAB (vinh − v)

Where v (function of time, Equation 1) is the voltage of the
post-synaptic neuron and vexc and vinh are the reversal poten-
tials for excitatory and inhibitory synapses. Here we chose
vinh = −90 mV, vexc = 0 mV. Each neuron receives excitatory
inputs from a square of maximum 48 neighbors, while inhi-
bition from maximum eight neurons. Using these parameters
a single excitatory pre-synaptic spike induces a depolarization
of maximum ∼0.1 mV, while an inhibitory pre-synaptic spike
leads to maximum ∼0.5 mV hyperpolarization. All the main
parameters of the simulations (the a, b, c, d parameters describ-
ing the dynamics of single neurons for both excitatory and
inhibitory neurons and the s parameters for synaptic connec-
tions) were selected from a normal distribution with standard
deviation equal to 1% of the average value. To mimic the
onset of an ID, a few parameters of the network were cho-
sen in order to place the network in a hyperexcitable state. The
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excitability of excitatory neurons was slightly increased by inject-
ing depolarizing currents (amplitude equal to 2), that could
mimic the effects of 4-AP (a K+ channel blocker) used in the
slice preparation. The high values chosen for both the con-
ductance and the time constant of NMDA currents aim to
reproduce the low Mg2+ experimental conditions. Without stim-
ulation, both excitatory and inhibitory neurons are completely
silent.

The NMDA stimulation that in experimental slice prepara-
tions evoked an ID was simulated in the model by depolarizing
a set of neurons within a 7× 7 square area above threshold
for 500 ms (49 neurons). We refer to this as a simulated pulse
(SimP). Alternatively, the NMDA pulses could have been sim-
ulated by activating NMDA currents. However, since we are
interested in analyzing the effects on NMDA currents during
the ID onset, this would have resulted in “stimulation arti-
facts” (the NMDA current induced by the pulse). Since we
were also interested in studying the mechanisms leading to ID
generation, the intensity of the stimulation was set to a value
that not necessarily induced an ID in all the simulations (see
Figure 3D).

In each simulation, nine SimPs were applied. In unsuccess-
ful simulations, the average firing rate in the network increases
during each SimP, but it rapidly comes back to zero between suc-
cessive SimPs. An ID was considered to be successfully generated
when the firing rate in neurons remains sustained above 1 Hz. The
ID onset was then defined as the number of SimPs which starts
this process.

The cessation of the ID was obtained by a modulation of the
parameter b in a firing specific way. More specifically, we assumed
that an elevated spiking activity decreases the excitability of sin-
gle neurons. Possible physiological correlates of this event are the
inactivation of Na+ channels (Bazhenov et al., 2004), the activa-
tion of Ca2+- or Na+-dependent K+ channels (Alger and Nicoll,
1980; Schwindt et al., 1989; Bazhenov et al., 2004; Timofeev et al.,
2004) or the exhaustion of metabolic support (Yamada et al.,
2001; Kirchner et al., 2006).

The equation used is:

db

dt
= −mR(t)+ (bs − b) (4)

Where R(t) is the spike train of a single neuron low-pass filtered
(time constant equal to 150 s), m is the coupling constant between
the spiking activity and b (chosen here to be 15), and bs the value
of b in resting conditions (no spiking activity). The second term
in the equation can be thought as a driving force to recover the
normal neuronal functionality of the neuron, for example the
metabolic support.

Because of the hyperexcitability of the network, i.e., neurons
are firing intensively at ID onset, we had to integrate Izhikevich’s
equations with the method proposed in Izhikevich (2010) assum-
ing the time step to be 1 ms:

v(t + 1) = v(t)+ f (v(t), u(t))+ g(t)E(t)+ I

1+ g(t)
(5)

Where E(t) =∑ (
gi(t)Ei

)
/g(t) with g(t) =∑

gi(t) (the total
sum of conductances) and Ei = vexc, vinh for excitatory and
inhibitory connections, respectively. This method is efficient and
stable even for large synaptic currents.

“Excitation” refers to the sum of excitatory currents (AMPA
and NMDA) averaged across neurons, and similarly “inhibi-
tion” refers to the average summed inhibitory currents (GABAA

and GABAB). Excitatory and inhibitory firing rate indicate the
firing rate of excitatory and inhibitory neurons, respectively.
Where otherwise indicated, excitation, inhibition and firing rates
of single simulations were always filtered with a moving aver-
age filter using a 50 ms time window for better visualization.
Postictal refractory period was estimated as the time between
the end of the seizure (average firing rate back to zero) and the
time at which the b variable recovers to the 95% of the initial
value.

Under the conditions described above, our computational
model is able to generate a neuronal network activity which
resembles several characteristics of experimental focal IDs (see
later in the “Results”):

(i) the simulated ID originates from a small number of neurons
in the network and propagates outside the focal area with a
delay (Traub and Wong, 1982; Avoli et al., 2002);

(ii) the simulated ID arises from an unbalance between
inhibitory and excitatory activity at the focal area (Bradford,
1995; Ben-Ari, 2002);

(iii) the simulated IDs have a cessation and a similar average
duration (Jefferys, 1990; Traub et al., 1993; Pinto et al.,
2005);

(iv) the network enters into a period of postictal refractoriness
(Jefferys, 1990);

(v) the peak in the firing rate of the excitatory and inhibitory
neurons during simulated IDs is compatible with that mea-
sured in the in vitro experimental models.

Our model failed to reproduce the bursting behavior which
characterizes the firing discharges in individual neurons and the
two main phases in ID development, i.e., the initial tonic and the
delayed clonic activity. However, the main focus in this compu-
tational model was to include astrocytes in the neuronal network
and gain insights into how these non-neuronal cells can affect the
equilibrium between excitation and inhibition in the network.

ASTROCYTE MODEL
We introduce here a simple representation of astrocytes inter-
acting with a neuronal network. The parameters related to the
ability of astrocytes to respond to neuronal activity with cytosolic
Ca2+ elevations were captured from results obtained in experi-
ments performed both in brain slices (Pasti et al., 1997; Porter and
McCarthy, 1997) and in the living brain (Hirase et al., 2004; Wang
et al., 2006; Kuga et al., 2011). To simulate the Ca2+ dynamics of
a single astrocyte we used a framework similar to the Izhikevich
neuron model. The equations represent a dynamical system of
two variables [(Ca2+) and ϕ], without non-linear action potential
or reset. The set of equation describing the Ca2+ concentration
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has the following form:

d
[
Ca2+]
dt

= −ϕ+
∑

j

σjδ
(
t − tf

)

dϕ

dt
= α

(
β

[
Ca2+]− ϕ

)
(6)

where ϕ is a recovery variable and σj is assumed here to be the
neuronal input when an action potential is generated by the neu-
ron j, since astrocytes respond to neuronal releases of glutamate
(Pasti et al., 1997; Porter and McCarthy, 1997). Although the
equations are dimensionless, the values σj where chosen to repro-
duce the pattern and amplitude of the Ca2+ elevations that are
experimentally observed in astrocytes in response to neuronal
activity (Porter and McCarthy, 1996; Pasti et al., 1997). The val-
ues of σj was chosen as been normally distributed with mean
0.00083 and standard deviation equal to 1% of the mean. Ca2+
concentration was restricted to be non-negative. Similarly to the
dynamics described by the Izhikevich’s single neuron, different
values of α and β determine different behaviors (time constant of
changes and coupling with the recovery variable). Here we chose
α = 0.001 and β = 0.01. This choice was made to reproduce the
slow time course of Ca2+ changes in astrocytes (Kawabata et al.,
1996). When astrocytes were included in the whole network, these
values were chosen to be normally distributed with a standard
deviation equal to 1% of the mean.

To describe the release of astrocytic glutamate triggered by
Ca2+ elevations, we considered a first order dynamics (low pass
filters), with a release of glutamate that can occur only when Ca2+
reach a threshold (Pasti et al., 1997; Parpura and Haydon, 2000;
Pasti et al., 2001):

μ
d

[
glu

]
dt
=

⎧⎨
⎩
− [

glu
]+ ([

Ca2+]− [
Ca2+]

th

)− κλ

if
[
Ca2+]

>
[
Ca2+]

th
− [

glu
]− κλ otherwise

η
dλ

dt
= −λ+ [

glu
]

(7)

Where [Ca2+]th = 0.0018 mM is the threshold for glutamate
release, κ = 200 describes the coupling between the glutamate
concentration [glu] and the recovery variable λ. Glutamate con-
centration was imposed to be non-negative. The time constants
for the two variables were μ = 0.5 s and η = 10 s. The value of
[Ca2+]th was set based on available data showing that an increase
in astrocytic Ca2+ of a few hundreds of nM was able to trig-
ger glutamate release (Parpura and Haydon, 2000). Assuming a
value of 200 nM for a single synapse (Nadkarni and Jung, 2003)
and considering that astrocytes in our model receive inputs from
a maximum of nine neurons, the threshold value can be deter-
mined by multiplying the value for the single synapse by the
number of inputs, as considered in other studies (Wade et al.,
2011).

The set of parameters used for a single astrocyte repro-
duces basic features of Ca2+ dynamics and glutamate release
in astrocytes. Increasing the input to an astrocyte, simulated as

Poisson-distributed spike trains of increasing frequencies, leads
to increasing Ca2+ concentrations (Figures 1A1–A4). The Ca2+
increase due to a single spike is less than 100 nM and lasts for
about half a second (inset in Figure 1A1). These results are com-
patible with experimental evidences (Pasti et al., 1997; James
et al., 2011) and previous computational models (Jefferys, 2003;
Nadkarni and Jung, 2004, 2007; Wade et al., 2011). The linear
dependence of Ca2+ increases as a function of simulated firing
rate is reported in Figure 1B. Increasing the number of inputs
by summing up Poisson-distributed spike trains (color scale from
red to blue) also elevated Ca2+ concentrations. Since the release
of glutamate due to the Ca2+ increases occurs only when Ca2+ is
above a threshold, only strong activation can drive the release. As
an example, nine spike trains at 10 Hz induced transient releases
of glutamate (Figures 1C1,C2, Ca2+ threshold in red). Figure 1D
summarizes the dependence of glutamate released by the astro-
cyte as a function of the firing rate and the number of inputs.
For very low firing rates, there is no astrocytic glutamate release
independently on the number of inputs. In the case of high fir-
ing rates, the release is linearly dependent on both the number of
inputs and the firing rate. To further validate the parameters that
we choose, we stimulated single astrocytes with a spike train from
nine neurons from a simulated ID (see later in the “Results”).
The neuronal activity leads to Ca2+ increases in the astrocyte
(Figure 1E1) that caused a glutamate release (Figure 1E2) only
after the second pulse (see also below). Interestingly, when the
ID was fully developed, Ca2+ elevations reached a steady state
value and glutamate was no longer released. It is known from
experiments in cultures and in brain slices (Pasti et al., 1997;
James et al., 2011) that upon intense stimulation the Ca2+ level
in astrocytes increases rapidly and remains at an elevated steady-
state value for tens of seconds (Figure 1E1). A single episode of
glutamate release is experimentally observed only after the initial
Ca2+ rise.

Astrocytes were included in the network with a 1:1 ratio with
neurons. The ratio of glia to neurons increases in phylogenesis
and is 1.65 in the human frontal cortex (Oberheim et al., 2006;
Sherwood et al., 2006). Given that astrocytes account for about
50% of the total number of glial cells, a 1:1 ratio seems to rep-
resent an acceptable approximation. The input from neuronal
activity, σ for each m astrocyte, was considered as the excitatory
input from neurons firing sexc(m) (the excitatory component) in
a 3× 3 square (inputs from nine excitatory neurons). This choice
was made considering that the feedback of astrocytes on neu-
ronal activity is thought to be local with four to eight neuronal
somata enveloped by a single astrocyte (Halassa et al., 2007b),
but with the processes from a single astrocyte associated with
up to 600 dendrites and many thousands of synapses (Bushong
et al., 2002; Oberheim et al., 2006). The glutamate released by
astrocytes was used as input to the same neurons to which the
astrocyte is exposed. This glutamate generated NMDA currents
in these neurons by activating the NMDA channel (in the same
way than sexc). In some simulations (see “Results”) we consid-
ered the effects of inhibitory inputs from astrocytes. This was
done by considering that the astrocytic response activate GABAA

receptors instead of NMDA (so simulating the effect of GABA
release).
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FIGURE 1 | Ca2+ changes and glutamate released from a simulated

astrocyte in response to different patterns of neuronal firing. (A1–A4)

Ca2+ change in the simulated astrocyte induced by Poisson-distributed
spike trains of increasing frequencies of an individual neuron. A single
Ca2+ increase is outlined by the box in (A1) and expanded within the inset.
(B) Summary of the Ca2+ concentration in the simulated astrocyte as a
function of an increasing number of Poisson-distributed neuronal inputs

(colorbar from red to blue) and increasing firing frequency. (C1,C2) Ca2+
change and glutamate released from the simulated astrocyte in response to a
Poisson-distributed spike trains of nine inputs. Glutamate is released only
when Ca2+ is above a threshold (red dashed line). (D) Summary of the
glutamate released from the simulated astrocyte (gray scale colorbar) in
response to the same neuronal stimulation as in (B). (E1,E2) Ca2+ change
and glutamate released from the simulated astrocyte during a simulated ID.

All the simulations were performed using MATLAB
(Mathworks), and the code is available at www.neuralengr.
com/code.

RESULTS
FOCAL ID GENERATION IN ENTORHINAL CORTEX SLICES
As we previously reported (Losi et al., 2010), an episode of
neuronal hyperactivity can generate a focal ID in EC slices per-
fused with the K+ channel blocker 4-aminopyridine (4-AP)
and low Mg2+. Figure 2 illustrates a typical ID that was gen-
erated in cortical layer V-VI by a double brief pressure pulse
applied to an NMDA-containing glass pipette (Figures 2A,B).

Dual patch-clamp recordings revealed that the firing in neurons
located within the focus (Figure 2C, neuron 1) evolved into a
focal ID with some delay after the NMDA double pulse. Following
the ID generation at the focus (Figure 2A, gray circle), neurons
outside the focus (<400 μm from the NMDA pipette tip) were
also recruited and exhibited a similar pattern of action potential
firing (Figure 2C, neuron 2). Given that the somatic Ca2+ change
in neurons reflects faithfully the action potential firing in these
cells, in slices loaded with the Ca2+ sensitive dye Oregon Green
BAPTA1-AM (OG-B1-AM) we could monitor the activity of tens
of neurons and follow how a focal ID is generated in the neuronal
network. These experiments revealed that the NMDA stimulation
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FIGURE 2 | Experimental protocol for inducing focal IDs in brain slices.

(A) Schematic of a dual voltage-clamp recording from EC deep layers
pyramidal neurons (PyNs) with indication of the NMDA pipette and the patched
neurons (1,2), one within the region directly activated by NMDA (gray circle)
and the other immediately outside (∼200 and ∼350 μm from the NMDA
pipette respectively). (B) DIC image of the area marked by the dashed box in
(A). Scale bar 100 μm. (C) Dual current-clamp recording from two PyNs during
a focal ID evoked by a double NMDA pulse (arrowheads). The vertical dashed
line marks the generation of ID in both cells. Note that in neuron 1 the direct
NMDA response precedes and partially masks the ID onset. (D) Schematic of

an experiment similar to that reported in (A) showing the region of Ca2+ signal
imaging (blue box). The image of the basal OGB1 fluorescence in the EC (t0)
and the difference images of the fluorescence signal change captured at
different times (see lower traces) during an evoked ID (t1–t0; t2–t0) are
reported. The NMDA-pipette is visible on the left. The dashed line in the image
t1–t0 marks the region directly activated by NMDA. Scale bar 100 μm. Lower
traces show the Ca2+ signal change from two neurons that were directly
activated by NMDA (upper traces) and two other neurons, located outside the
region directly activated by NMDA, that exhibited the ID only (lower traces).
The timing that corresponds to the different images (t0, t1, and t2) is reported.

evoked a rapid Ca2+ elevation in neurons located within the focal
area, while neurons from the surrounding network were recruited
into the ID only after a delay of 10.9± 0.8 s (30 IDs from 15
slices).

FOCAL ID GENERATION IN THE NEURONAL NETWORK MODEL
In the model we first examined how the neuronal network
responds to a sequence of simulated NMDA pulses in the
absence of astrocytes. To mimic the NMDA pulses at the focus,
a depolarizing current pulse was injected for 500 ms in an
area of 7× 7 neurons (see “Methods”). The first SimP evoked
robust spiking activity that remained restricted to neurons of the
focus (Figure 3A1). Upon successive SimPs the firing activity

spread from the focus to the surrounding neurons approximately
10 s after the SimP onset (Figures 3A1–A4,B1). The neuronal
firing discharge remained high thereafter for tens of seconds
(61± 2 s) before a sudden cessation (Figure 3B1). A postictal
refractory period was observed with an average duration of
266± 1 s (see “Methods”). This pattern of activity resembles
the focally evoked ID in slice preparations (see Figure 2D). A
raster plot of the activity in a subpopulation of excitatory and
inhibitory neurons within and outside the focus revealed that
inhibitory neurons fire more intensively as compared to excitatory
neurons during the SimPs, while the spiking activity in exci-
tatory neurons increases with successive SimPs (Figure 3B2).
The peak of the activity in the whole network was reached
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FIGURE 3 | Simulated IDs from a purely neuronal network.

(A1–A4) Pseudocolor plot of the number of action potentials calculated in
50 ms time windows at different times of the simulation. (B1) Membrane
voltage (considered from −90 to −40 mV) for all the neurons in the network
during a simulated ID. (B2) Raster plot of the spiking activity of a
subpopulation of neurons in the network in the first 30 s of simulation
(excitatory in blue and inhibitory in red). (B3) Average firing rate of the
neurons in the network during a simulated ID. (B4) Spectrogam of the

average firing rates for 40 simulations. Note the high frequency component
corresponding to the firing of inhibitory neurons and the low one
corresponding to excitatory neurons. (C1–C4) Examples of neuronal voltage
traces of excitatory and inhibitory neurons within and outside the focus.
(D) Histogram of ID threshold for 250 simulations. (E1,E2) Average value of
excitation/inhibition (average post-synaptic excitatory currents) at the focus
(blue/red), outside the focus (light blue/light red). Note that, differently from
excitation, the inhibition does not accumulate after subsequent SimPs.

during the ID (Figure 3B3) and its spectrogram clearly revealed
two main components corresponding to the different activ-
ity in excitatory and inhibitory neurons that fire at about 15
and 60 Hz, respectively (Figure 3B4). This pattern of activity in
the two neuronal populations is consistent with experimental

observations (Ziburkus et al., 2006). While both excitatory
and inhibitory neurons at the focus were activated upon the
initial stimulation (representative traces in Figures 3C1,C2),
neurons outside the focus were recruited into the propagating
ID with some delay (representative traces in Figures 3C3,C4).
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ID GENERATION THRESHOLD
We consider as ID threshold the number of NMDA pulses that
are needed to evoke an ID. This value is constant for a given slice
(Gomez-Gonzalo et al., 2010), but it can vary for different slices.
Simulations with different parameters (see “Methods”) showed
that an ID could be generated in average by five SimPs and in
more than 25% of cases no IDs could be evoked regardless the
number of applied SimPs (Figure 3D, n = 250 simulations). The
successive SimPs induced excitatory responses at the focus with
increasing amplitude (Figure 3E1). The excitatory and inhibitory
neurons outside the focus were not directly activated by the SimPs
and increased their firing activity simultaneously, but with a
marked delay (Figures 3E1,E2).

DYNAMICS OF EXCITATION AND INHIBITION AT THE FOCUS EXPLAIN
ID GENERATION
We next investigated the interplay between excitation and inhibi-
tion in the genesis of the ID. We compared the simulations which
successfully evoked an ID with those that failed to evoke an ID
(in the different simulations excitatory and inhibitory neurons
were randomly located within or outside the focus while main-
taining their total number). For the cases in which an ID was
successfully generated, we find that the ratios between the num-
ber of excitatory and inhibitory neurons, the average inhibitory
and excitatory currents during the first SimP and the firing rate
of inhibitory and excitatory neurons in the same time interval
were lower compared to cases where an ID was not successfully
generated (Figures 4A1–A3).

We next tested whether a different strength in either exci-
tation or inhibition at the focus changed the efficacy of the
SimP in generating an ID. We analyzed the time course of
excitation and inhibition at the focus and the average firing
rate in the whole network. We examined three sets of net-
work parameters chosen at random, but leading to different ID
thresholds, i.e., no ID generation, high ID threshold (five SimPs)
and low ID threshold (three SimPs) (Figures 4B–D respec-
tively). In all cases, excitatory and inhibitory drive increased
the firing rate (Figures 4B2,B3,C2,C3,D2,D3). A detailed anal-
ysis of the dynamics revealed that after each SimP both exci-
tation and inhibition were strongly but transiently activated
(Figures 4B1,C1,D1). An important difference is that, in con-
trast to inhibition, excitation failed to recover the initial basal
conditions, including the simulations in which no ID is gener-
ated (Figure 4B). An additional striking difference between the
three examples is the maximal inhibition level provided by the
inhibitory neurons (the dynamic range). Inhibition reached its
highest value in the high ID threshold condition. These results
support the view that inhibition strength is a critical factor for
focal ID onset. Notably, excitation rose faster than inhibition
(slope > 1) driving the growth in firing rate forward. However,
the ID occurred only after inhibition reached its maximal value
(all inhibitory neurons were active). Therefore the ratio of exci-
tatory versus inhibitory drive and the limiting dynamic range of
inhibition are the two critical factors in ID generation. As a sum-
mary of results obtained, we report the distribution of points
in the excitation-inhibition plane at the focus during the first
seven SimPs in 250 Monte-Carlo simulations for the cases that

evoked or failed to evoke an ID (normalized by the total area;
Figures 4E1,E2). When inhibition at the focus reached high val-
ues, no IDs were generated and the ratio between excitation and
inhibition remained low. This stands in contrast to the cases
which lead to IDs, further supporting the notion that the relation-
ship between excitation and inhibition determines not only the
threshold for ID generation, but also whether or not an ID could
be evoked. Data obtained from 250 runs also showed a clear cor-
relation between the ID threshold and the average excitation and
inhibition in the network during the first SimP (Figures 4F1,F2).
This indicates that the overall response of the network, in terms of
excitation and inhibition levels, is a good predictor of ID thresh-
old: an increased excitation results in the lowering of the ID
threshold and an opposite relationship holds for inhibition.

ASTROCYTE-TO-NEURON SIGNALING DECREASES THE ID THRESHOLD
The model of the single astrocyte (see “Methods”) was incor-
porated into the network to test how astrocytes may affect ID
threshold. Specifically, 400 astrocytes were added to the network
model in a parallel 2D sheet of cells (see “Methods”). Astrocytes
provide an excitatory feedback to neuronal activity in a Ca2+-
dependent way (Figure 5A). As illustrated in Figure 5B, in the
presence of the astrocyte feedback signal, the ID was evoked by
two SimPs, while in its absence a more intense stimulation of
neurons was necessary. As illustrated in Figures 5F1,F2 the Ca2+
change from a representative astrocyte at the focus was observed
to follow rapidly the spiking activity in neurons (Figures 5C1,F1),
and astrocytic glutamate release occurred upon the second SimP
(Figure 5C2). The average astrocytic Ca2+ follow the neuronal
activity (example in Figure 5D1) while the average glutamate
release occurs transiently (Figure 5D2). The Ca2+ change and
the release of glutamate from astrocytes outside the focus failed
to affect focal ID threshold. The results from 250 Monte-Carlo
runs show that the ID threshold was lowered after including
the astrocytic feedback signal to neurons (Figure 5E). Once the
ID was fully evolved, both the Ca2+ change and the release of
glutamate from astrocytes within and outside of the focus did
not differ significantly (Figures 5F1,F2). However, the initially
dominant activity of astrocytes at the focus was followed by an
activity of the astrocytes outside the focus that became dominant
immediately after the ID onset. These results are consistent with
those from slice experiments which showed that when Ca2+ ele-
vation in astrocytes from the focus were selectively blocked (by
the Ca2+ chelator BAPTA) or stimulated (by TFLLR, a peptide
agonist of thrombin PAR-1 receptors), the threshold of ID gener-
ation increased or decreased, respectively (Gomez-Gonzalo et al.,
2010).

DOES AN ASTROCYTE INHIBITORY FEEDBACK SIGNAL TO NEURONS
AFFECT ID THRESHOLD?
The ID threshold is mainly affected by the interplay between exci-
tation and inhibition. Indeed, as we reported above, ID threshold
can be increased by increasing the overall value of the inhibitory
activity. The bar graph in Figure 6A reports the results from 250
simulations in different simulation settings, with and without an
astrocytic contribution (mean and errors represent the results of
a Poisson fit to the ID threshold distributions), while Figure 6B
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FIGURE 4 | Excitation–inhibition interplay during ID generation.

(A1–A3) Histograms showing the difference between the ratio of the number
(A1), the average synaptic currents (A2) and the firing rate (A3) between
inhibitory and excitatory neurons when an ID is or is not generated (A2 and
A3 are relative to the response to the first SimP). (B1–B3,C1–C3,D1–D3)

Dynamic representation of the first 18 s of simulations in which an ID: (B) is
not generated, (C) is evoked with a high threshold (five SimPs) and (D) is
evoked with a low threshold (three SimPs). The dynamics of the network is

represented as a point in the plane representing excitation and inhibition (in
the focus, B–D1), the average firing rate of the network and excitation (at the
focus B–D2) and the average firing rate of the network and inhibition (at the
focus, B–D2). (E1,E2) Normalized density of dynamical points in the
excitation/inhibition plane during the first seven SimPs (250 simulations)
when an ID is generated (E1) or it is not generated (E2). (F1,F2) Linear
regression showing the correlation between the ID threshold and,
respectively, the average excitation (F1) and inhibition (F2) in the focus.

is the cumulative sum of the ID threshold distributions corre-
sponding to the analyzed cases. Blue and red bars show that the
ID threshold can be increased by increasing the overall strength
of inhibitory connections (in this case from 0.01 to 0.015) in

a purely neuronal network (no astrocytes). With higher inhibi-
tion, the simulated stimulation failed to induce an ID in 40% of
simulations (Figure 6B). As already shown, the introduction of
an astrocytic excitatory feedback lowers the ID threshold (green
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FIGURE 5 | Astrocytes modulate ID threshold. (A) A schematic
representation of the tripartite synapse and the interplay between
astrocytes and neurons in the network. (B) Representative average firing
rates during simulated IDs with or without astrocytic contribution (black
and gray traces respectively). (C1) Pseudocolor plot of the Ca2+ changes
in the astrocytes during a simulated ID. (C2) Raster plot of the glutamate
released by astrocytes caused by the Ca2+ increases as in C1.

(D1,D2) Average trace of Ca2+ changes and glutamate released from
astrocytes during a simulated ID. (E) ID threshold for 250 simulations in a
network composed by both neurons and astrocytes. For comparison, panel
D from Figure 3 has been reproduced as an inset. (F1,F2) Representative
traces of Ca2+ changes and glutamate released from a single astrocytes at
the focus (black line) and outside the focus (green line) during a
simulated ID.

bar) and decreases the number of failures to about 10%. In slice
experiments we observed that the inhibition of Ca2+ signals in
astrocytes at the focus, but not outside the focus, increased the
threshold of ID generation. These observations were fully repro-
duced in the computational model (dark blue and magenta bars)
without further manipulations of the model over the results from
the previous section. Astrocytic excitatory feedback in a network

with stronger inhibitory connections (0.015 as for the red bar)
brings back to baseline the ID threshold (yellow).

To explore other factors that may affect ID threshold, we
considered the possibility that the activation of astrocytes, or
of a subpopulation of astrocytes, results in a release of GABA
that can lead to an overall increase of the inhibition strength
in the neuronal network. Astrocytes can, indeed, release GABA
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FIGURE 6 | Summary of the results. (A) ID threshold histogram in the
different conditions. The distributions were described by fitting with Poisson
distributions and determining the average values and relative errors.

(B) Cumulative sum of the ID threshold histograms to show more in details
how, for the different conditions tested, the threshold and the number of
failures in generating an ID change.

(Kozlov et al., 2006; Lee et al., 2011; Le Meur et al., 2012). As
expected, when we included an astrocytic GABA release in the
model, the threshold for ID generation increased (Figure 6, dark
green). Note that this was an inhibitory-only feedback involving
only GABA release and no glutamate. Surprisingly, however, the
threshold for ID generation did not rise over the baseline condi-
tion with no astrocytic feedback (blue). A possible explanation for
this could be the synchronizing action of an inhibitory GABA sig-
nal. Alternatively, the inhibitory feedback signal from astrocytes
could be more effective in suppressing inhibitory than excitatory
neurons. This action may ultimately generate a new level of com-
plexity in the mechanism that governs the inhibition/excitation
balance in the neuron-astrocyte network.

DISCUSSION
Increasing experimental evidence highlights the physiological sig-
nificance of the tripartite synapse in which the astrocyte senses
neurotransmitter release and, in turn, releases through a Ca2+-
dependent mechanism gliotransmitters that have feedback mod-
ulatory actions on neurons. A number of recent studies in vitro
and in vivo showed that the release of glutamate from astro-
cytes can, indeed, control both the basal excitability of neurons
and some forms of long-term potentiation of synaptic strength
(Serrano et al., 2006; Jourdain et al., 2007; Navarrete and Araque,
2010; Santello et al., 2011; Min and Nevian, 2012) and long-term
depression (Zhang et al., 2003; Serrano et al., 2006; Han et al.,
2012; Min and Nevian, 2012). The contribution of gliotransmis-
sion to brain dysfunctions remains, however, poorly understood.
A model composed of a network of interacting neurons and
astrocytes represents a useful tool in which the spatial-temporal
features of focal seizure generation observed in slice models can
be replicated and new mechanistic hypotheses can be tested.

Over the last 10 years, different models have been advanced
to describe the Ca2+ dynamics of astrocytes in response to neu-
ronal signals (Nadkarni and Jung, 2003, 2007; Silchenko and Tass,
2008; Di Garbo, 2009). These biophysical approaches described
not only the astrocytic Ca2+ response (Li and Rinzel, 1994), but

also the possible feedback to neurons. More recently, the possi-
ble contribution of astrocytes in events related to the plasticity
of synaptic transmission were also included in models (Nadkarni
et al., 2008; De Pittà et al., 2011; Wade et al., 2011). While bio-
physical models are very useful to simulate basic units, like the
tripartite synapse, they are hardly suitable for large scale simula-
tions. In contrast, simplified models that include only the basic
features of neuron-astrocyte interactions (Postnov et al., 2009)
appear more appropriate to describe network dynamics and to
investigate the role of astrocytes in epilepsy (Amiri et al., 2012).
In our model we did not include any distinct biophysical features
that characterize the physiological actions of either neurons or
astrocytes. We rather describe the activity of a single astrocyte
in terms of the specific input-output signals with which astro-
cyte and neurons interact. This simplified astrocyte model was
then embed in a neuronal network model of IDs based on the
Izhikevich’s single neuron model.

The slow kinetics of the astrocyte Ca2+ response to neuronal
activity in the model reflect those of the mGluR-mediated Ca2+
elevations that were evoked in astrocytes by axonal afferent stim-
ulation in young rat hippocampal slices (Porter and McCarthy,
1995; Pasti et al., 1997; Perea and Araque, 2005). Indeed, the
intracellular Ca2+ variations in astrocytes depend primarily,
although not exclusively, on activation of metabotropic receptors,
phospholipase C-dependent inositol(1,4,5)-trisphosphate (IP3)
production and, finally, stimulation of Ca2+ release from IP3-
sensitive internal Ca2+ stores (Kawabata et al., 1996). Glutamate
release at the synapse triggers a Ca2+ response in astrocytes that
increases in both amplitude and frequency of oscillations accord-
ing to increased levels of the neuronal activity (Pasti et al., 1997).
These Ca2+ changes trigger a SNARE-dependent exocytosis of
glutamate that signals back to affect the excitability of neurons
(Araque et al., 2000; Pasti et al., 2001; Parpura et al., 2004).
Accordingly, in the model we reproduced the most essential
features of glutamate release in response to Ca2+ elevations in
astrocytes. The release of glutamate is pulsatile and depends on
the frequency of Ca2+ oscillations (Pasti et al., 2001), while its
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efficacy is controlled by the amplitude of the Ca2+ increase
(Parpura and Haydon, 2000). In addition, a steady state Ca2+ ele-
vation may trigger only a single episode of release (Pasti et al.,
2001).

Some approximations were applied to describe two features
that characterize astrocyte signaling in our model. Firstly, we
restricted our analysis to somatic Ca2+ signals. These Ca2+
increases can not be intended to fully represent the synapse-to-
astrocyte signaling occurring fundamentally at the proximal and
the distal processes that are in contact with the synapse. Indeed,
somatic Ca2+ increases exhibit a lower frequency and slower
kinetics with respect to those at the processes (Di Castro et al.,
2011; Panatier et al., 2011). While these recent studies also showed
that Ca2+ elevations at the astrocytic processes can have a distinct
functional role, it is noteworthy that the Ca2+ elevation at the
soma may represent a response that integrates the signals from
the processes where astrocytes sense neurotransmitter release.
Accordingly, Ca2+ signals at the soma may adequately reflect the
overall firing activity of surrounding neurons. Amplitude, fre-
quency and general pattern of somatic Ca2+ changes are, indeed,
observed to vary according to different levels of neuronal activ-
ity (Pasti et al., 1997; Porter and McCarthy, 1997). Secondly,
while glutamate (Parpura et al., 1994; Pasti et al., 1997; Bezzi
et al., 1998), D-serine (Mothet et al., 2005; Henneberger et al.,
2010), ATP (Arcuino et al., 2002; Serrano et al., 2006; Bowser and
Khakh, 2007), and GABA (Kozlov et al., 2006; Lee et al., 2011)
[for a review see Haydon and Carmignoto (2006)] are the main
gliotransmitters mediating astrocyte-to-neuron signaling, in our
model we fundamentally focused on glutamate because a large
body of information is available about its modulatory action on
both basal synaptic transmission (Fellin et al., 2004; Di Castro
et al., 2011; Panatier et al., 2011) and long-term plasticity (Zhang
et al., 2003; Panatier et al., 2006; Serrano et al., 2006; Jourdain
et al., 2007; Navarrete and Araque, 2010; Santello et al., 2011; Han
et al., 2012; Min and Nevian, 2012). In addition, the contribution
of astrocytic glutamate in some forms of long-term potentiation
of synaptic transmission has been recently confirmed in in vivo
experiments (Takata et al., 2011; Navarrete et al., 2012). The
potential role in focal seizure generation of ATP, D-serine and
GABA will be the subject of future investigations. It is worth men-
tioning here that D-serine, and not glycine, is most likely the
physiological co-agonist of the synaptic NMDA receptor in the
brain (Mothet et al., 2000; Panatier et al., 2006; Fossat et al., 2012;
Papouin et al., 2012). Given that D-serine is mainly, although
not exclusively (Ding et al., 2011), synthesized in astrocytes and

released through a Ca2+-dependent mechanism (Wolosker et al.,
1999; Wolosker, 2011), astrocytic D-serine may cooperate with
glutamate to enhance NMDA receptor openings and through this
action favor neuronal excitability ultimately promoting epileptic
discharges.

The pathological increase in brain network excitability that
eventually leads to focal seizure generation is believed to derive
from the activity of excitatory and inhibitory neurons as well as
of astrocytes. The cellular events that favor or oppose seizure ini-
tiation and propagation remain, however, poorly defined. Our
model offers the opportunity to study ID generation in simu-
lated networks composed by either only neurons or interactive
astrocytes and neurons. The results that we obtained are summa-
rized in Figure 6 and can be, in our opinion, useful to understand
how distinct signaling pathways may govern focal ID generation.
Figure 6 plots the average threshold for ID generation in the dif-
ferent conditions (mean ± SD, Figure 6A) and the cumulative
sum of the threshold histograms (Figure 6B) showing failures.
We found that in a network composed exclusively of neurons
an ID can be generated by applying an intense stimulation of a
group of neurons. The introduction of astrocytes into the network
lowered ID threshold, while the inhibition of astrocyte signal-
ing to neurons within, but not outside the focus, increased ID
threshold. These results are fully consistent with those obtained in
slice experiments (Gomez-Gonzalo et al., 2010) and demonstrate
that focal IDs can be faithfully reproduced in our computational
model. Accordingly, our model can be used to make predictions
on the distinct contribution of different signaling pathways to
ID generation. We present here some results regarding inhibitory
signaling pathways. The ID threshold was observed to increase
upon procedures that increase the strength of inhibition onto
the principal neurons. This was achieved by either increasing the
strength of the inhibitory transmission or by including in the
model a distinct inhibitory feedback signal from astrocytes to
neurons via GABAA receptors. These observations will be useful
when addressing in future slice experiments the role of inhibitory
signaling in ID generation.
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