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Audience preferences are predicted by
temporal reliability of neural processing
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Naturalistic stimuli evoke highly reliable brain activity across viewers. Here we record

neural activity from a group of naive individuals while viewing popular, previously-broadcast

television content for which the broad audience response is characterized by social media

activity and audience ratings. We find that the level of inter-subject correlation in the evoked

encephalographic responses predicts the expressions of interest and preference among

thousands. Surprisingly, ratings of the larger audience are predicted with greater accuracy

than those of the individuals from whom the neural data is obtained. An additional functional

magnetic resonance imaging study employing a separate sample of subjects shows that the

level of neural reliability evoked by these stimuli covaries with the amount of blood-oxyge-

nation-level-dependent (BOLD) activation in higher-order visual and auditory regions. Our

findings suggest that stimuli which we judge favourably may be those to which our brains

respond in a stereotypical manner shared by our peers.
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P
redicting the behaviour of large groups is inherent to such
diverse processes as forecasting election results, anticipating
the reception to upcoming films, and foreseeing the effects

of changes to laws or policies. Meanwhile, the prediction of
individual behaviour is a pillar of neuroscience, with a recent
focus on the study of naturally occurring behaviours. Previous
investigations have identified the neural correlates of individual
preferences1–5, subjective values6 and choices7–9 by measuring
the functional magnetic resonance imaging (fMRI)-derived
blood-oxygenation-level-dependent (BOLD) signal in regions-
of-interest while subjects perform experimental tasks. Here we
ask whether the neural activity of multiple individuals may
collectively predict the behaviour of large groups.

Previous works aimed at predicting population trends from
brain activity have employed the amplitude of a neural signal,
typically the BOLD, as a readout of future behaviour4,9,10. Such
an approach implicitly assumes that the strength of neural
response in a fixed region correlates with behavioural measures.
More recently, however, a growing link is emerging between the
reliability of neural processing (that is, correlation across repeated
presentations of the stimulus) and natural behaviours. Indeed,
naturalistic audiovisual stimuli have been shown to elicit highly
reliable neural activity across multiple viewers11, with the level of
such inter-subject correlation (ISC) linked to successful memory
encoding12 and effective communication between individuals13.
ISC is increased during scenes marked by high arousal and
negative emotional valence11,14, and is strongest for familiar and
naturalistic events15. In addition to these fMRI studies, recent
work found that engaging narrative stimuli yield high levels of
ISC in the evoked encephalographic responses of a small sample
of viewers16,17.

Given the evidence linking ISC—inherently a group measure—
to brain states characterized by heightened affect, attention and
memory retention, we suspected that the agreement in neural
responses may serve as a suitable predictor for subsequent
population behaviour. Specifically, we hypothesized that the level
of neural reliability elicited by a naturalistic stimulus in a small
sample would be predictive, to some degree, of behavioural
responses reflecting engagement or interest of a large population.

Broadcasts of popular television shows or advertisements serve
as a convenient framework for testing our hypothesis: in the
social media age, the responses of large audiences are captured in
online networks such as Twitter, Facebook and YouTube. We
leverage this to explore the link between neural and behavioural
responses. Namely, we recruited a sample of 12–16 naive subjects
and presented them with stimuli which had been previously aired
and for which we compiled aggregated measures of the
population response. We imaged brain activity during this
exposure, employing electroencephalography (EEG) which cap-
tures broad patterns of activity on the time scale of neuronal
processing, allowing us to measure reliability in short temporal
segments. To further characterize the observed reliability, we
subsequently performed an EEG-informed fMRI activation study
to identify brain areas which are systematically more (or less)
active during stimuli which elicit greater ISCs in the EEG. Most
importantly, we found a statistically significant link between the
neural reliability in the sample and preferences of large audiences
within and across contemporary audiovisual stimuli. Our findings
suggest that behavioural responses of large groups to natural
stimuli may be robustly predicted from the reliability in
corresponding neural responses of a small sample of individuals.

Results
We sought a stimulus eliciting time-varying and readily available
viewer responses across a large population. To that end, we

considered the premiere broadcast of a popular television series
(‘The Walking Dead’, AMC, 2010) in conjunction with two
metrics which capture the audience’s response to the original
broadcast in a time-resolved manner.

An online service which collects Twitter traffic information was
employed to obtain a comprehensive listing of time-stamped,
stimulus-relevant tweets, which originated during the airing of
the episode. Meanwhile, 16 study participants representative of
the series’ target demographic were recruited to view the episode
while having their neural activity recorded with high-density
EEG.

The stimulus was partitioned into its 190 constituent scenes
(ranging in duration from 1.4 to 300.5 s, with a median length of
17 s), where a scene was defined as an aggregate of shots (that is,
uninterrupted sequences of frames) comprising a distinct
narrative event. For each scene, we computed the frequency of
elicited tweets. To account for the non-negativity and heavy-
tailed distribution of Twitter activity18, we logarithmically
transformed the tweet rate to yield the time series shown in
Fig. 1a, which defines our dependent measure.

Meanwhile, we sought to measure the amount of neural
reliability evoked by each scene in our sample of participants.
Rather than computing reliability in an electrode-to-electrode
fashion, we first performed a dimensionality reduction technique
which projects the neural responses from all subjects onto a space
which maximizes the ISCs across our sample (see Methods for
details of computation). When measured in this optimized space,
the bulk of the reliability is captured in just a few dimensions
(that is, 3). The resulting scene-by-scene neural reliability was
then regressed onto our dependent measure, yielding the
predicted log tweet frequency (see equation (4) in Methods)
shown in Fig. 1b.

The neural reliability experienced by the sample throughout
each scene explains 16% of the variance in audience log tweet
frequency (Fig. 1c; r¼ 0.40, P¼ 6.1� 10� 7, N¼ 190, P-value
computed using the analytic distribution of the sample correla-
tion coefficient19, 95% confidence interval on r: (0.26,0.51)
computed using the bootstrap20). It is worthwhile to note that
while tweeting is a delayed behavioural response, the observed
neural reliability is driven by immediate short-term responses
(reliability was calculated for activity 0.5 Hz or higher; see
Methods and Fig. 4).

On the basis of previous findings suggesting an association
between ISC and narrative quality, novelty and coherence11,16,21,
we suspected that neural reliability may also predict viewership
size. To that end, we obtained minute-by-minute Nielsen ratings
stemming from the original broadcast (including advertisements),
resulting in a time series conveying audience size and defining
our dependent measure (Fig. 2a).

The decision to continue viewing may depend, in part, on
recent viewing history. As a result, we opted not to correlate
reliability instantaneously with viewership. Instead, we formed
our neural reliability measure using ISCs computed over the prior
3 min of viewing. We then regressed the resulting time series onto
the minute-by-minute viewership, yielding the predicted time
series shown in Fig. 2b. Neural reliability explains 36% of
viewership (Fig. 2c; r¼ 0.60, P¼ 7.1� 10� 8, N¼ 86; 95%
confidence interval on r: (0.45,0.71)).

There are two evident sources of variability in the Nielsen
ratings: a sudden drop in ratings during advertisements, and a
gradual decay due to declining audience retention. To determine if
the measured correlation is driven by the obvious variation from
intervening advertisements, we repeated the calculation but
omitting the advertising segments. Reliability explains 34% of of
the variance during programming alone (r¼ 0.58, P¼ 2.6� 10� 5,
N¼ 62, 95% confidence interval on r: (0.33,0.75)).
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The gradual drop in viewership size observed here is typical of
the free-viewing environment of the general audience (that is,
being able to change the channel at any time). This contrasts with
the laboratory environment in which participants are asked to
view the entire episode. To compensate for this mismatch in
viewing conditions, we removed the linear trend in the viewership
size and found even stronger correlations (complete broadcast:
r¼ 0.68, P¼ 4.9� 10� 11, 95% confidence interval on r:
(0.56,0.77); programming only: r¼ 0.66, P¼ 3.1� 10� 7, 95%
confidence interval on r: (0.45,0.82)). In other words, neural
reliability explains 43% of the variance in viewership size during
programming after accounting for the drop in retention.

We also considered the effect of the temporal window size (that
is, 3 min) used to define reliability on the prediction accuracy. As
shown in Supplementary Fig. 1, the strength of the relationship
between neural reliability and viewership exhibits a broad peak at
a window size of 3–4 min when predicting ratings during both
programming and advertisements, while increasing monotoni-
cally from 1 to 6 min when excluding ads (see also Supplementary
Note 1). In addition, the correlation of viewership size with neural
reliability is insensitive to which of the two age categories
provided by Nielsen is being predicted (Supplementary Table 1
and Supplementary Note 2).

Both the tweet frequencies and Nielsen ratings considered
above quantify audience response during a single programme.
Audience preferences are often expressed not within but across
competing programming. We wanted to test the ability of the

sample neural reliability to predict across-stimuli preferences. We
thus obtained the results of a popular online survey occurring
annually, in which a large number of participants view and
subsequently rate a series of advertisements (SuperBowl com-
mercials). We randomly sampled 10 ads from the 2012 version of
this survey and recruited a new set of N¼ 12 volunteers to view
these ads while recording their EEG. Subjects also provided their
own preference rating following the recording. For each
advertisement, we computed the neural reliability from the ISCs
in the neural responses of the sample (see Methods for details).
We found a strong and statistically significant correlation
between neural reliability and the population ratings (Fig. 3a,
circled markers; r¼ 0.90, P¼ 9� 10� 5, N¼ 10, 95% confidence
interval on r: (0.76,0.97)). Given this surprisingly strong
correlation, we sought to validate the results on a new stimulus
set, repeating the experiment with the 2013 series of ads while
employing the same 12 participants. The neural reliability
correlated significantly with the population ratings (Fig. 3a,
triangle markers; r¼ 0.73, P¼ 0.014, N¼ 10; 95% confidence
interval on r: (� 0.06,0.95); the drop in correlation from 2012 is
driven by a single advertisement, see Supplementary Note 3). By
combining all 20 advertisements viewed by each study partici-
pant, neural reliability explains 66% of the variance in population
ratings (Fig. 3a; r¼ 0.81, P¼ 3� 10� 6, N¼ 20, 95% confidence
interval on r: (0.50,0.92)). Intriguingly, neural reliability explains
just 26% of the sample’s own preferences (Fig. 3b; r¼ 0.51,
P¼ 0.02, N¼ 20, 95% confidence interval on r: (� 0.14,0.78)),
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Figure 1 | Neural reliability predicts scene-by-scene tweet frequency. (a) Log frequency of tweets related to each scene (N¼ 190) of a popular

television broadcast. (b) Log tweet frequency as predicted from the scene-by-scene neural reliability measured across 16 participants during subsequent

viewing of the episode in the laboratory (see equation (4) in Methods). (c) Neural reliability explains 16% of the variance in the log tweet rate (r¼0.4,

P¼ 6.1� 10� 7, N¼ 190; 95% confidence interval on r: (0.26,0.51)). Dashed line represents regression from predicted to actual log tweet rate.
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Figure 2 | Neural reliability predicts viewership size. (a) Viewership size during broadcast of television show as measured by Nielsen ratings.

Programming (blue) is interrupted by advertising (red). (b) Viewership as predicted from the neural reliability exhibited by 16 participants viewing the same

programming. (c) Neural reliability explains 36% of the variance in viewership size (r¼0.60) when including both periods of programming (blue)

and advertising (red), while accounting for 34% of the variance during programming alone (r¼0.58). Dashed line denotes regression from predicted to

actual viewership (including ads); prog ads, programming advertisements.
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which is significantly lower than the predictability of the
population preferences (P¼ 0.047, N¼ 20, Fisher r-to-z
transformation).

Could the reduced predictability of the sample ratings result
from the variability due to the smaller sample size? To examine
this, we generated N¼ 106 random samples of 12 ratings for each
of the 20 ads (assuming normal distributed ratings with the
population rating as the mean and variance as observed in the
actual sample). The resulting correlation of these simulated
sample ratings with the neural reliability was significantly higher
than what was observed for the actual sample ratings: a mean of
r¼ 0.75 with a 95% confidence interval of (0.66,0.83), leading to a
probability P¼ 4� 10� 5 of drawing the actual value of r¼ 0.51
from this distribution. We also explored the possibility of a
systematic difference in the ratings of the sample and those of the
population. However, ratings were largely consistent, differing
significantly for only two of the 20 ads (P40.05 false-discovery
rate, N¼ 12, Student t-test). A positive bias observed in the
average rating (þ 0.65, P¼ 0.006, N¼ 20, Student t-test) should
not affect correlation coefficients which are insensitive to a mean
offset. Indeed, our sample ratings explain 59% of the variance in
the population ratings (r¼ 0.77, Supplementary Fig. 2), further
lending credence to the notion that the reliability in neural
responses is indeed more strongly linked to preferences of the
population. Finally, it is worth noting that stimuli were judged
with high preference heterogeneity: the same advertising was
judged very differently by different subjects (the range of ratings
for each ad was 6.25±0.97, that is, almost the full range of 1–10
was used by the 12 subjects to rate the ads).

To probe the spatial dimension of the observed neural
reliability, we performed a follow-up fMRI experiment using a
separate sample (N¼ 14) of individuals, recording the BOLD
signal evoked by all 20 of the SuperBowl ads. The subsequent
BOLD activation time series were regressed onto the neural
reliability scores (see horizontal axis of Fig. 3) in a block-design
fashion. We sought to identify brain regions which exhibit
systematically higher levels of activation for stimuli marked by
high levels of neural reliability.

We found significant covariation of BOLD activity with EEG-
derived neural reliability in both left and right lateral temporal
cortices: these large clusters stretched from sensory association
areas in occipital cortex, along the superior temporal gyrus, to the

temporal poles (Fig. 4). Moreover, we observed significantly
larger BOLD activation patterns for high-reliability advertise-
ments in an area of parietal cortex including the superior parietal
lobule and precuneus. Meanwhile, a significant negative covaria-
tion between neural reliability and BOLD activation was found in
a region of medial prefrontal cortex (mPFC) that includes
anterior cingulate cortex (ACC), as well as the left inferior frontal
gyrus (IFG). To test if reliability of BOLD activity is also
predictive of preference ratings, we computed the ISC of the
spatiotemporal patterns of BOLD activity in the identified regions
for each advertisement. The measured BOLD-ISC did not
significantly correlate with the population nor the sample ratings
(r¼ 0.34 and r¼ 0.23, respectively, P40.14).
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Discussion
Here, we showed that measures of behavioural responses
aggregated over large audiences correlate significantly with the
neural reliability evoked by the corresponding naturalistic stimuli
in a small group of individuals. In particular, neural reliability is
highly predictive of across-stimuli preferences, and predicts
preferences of the large audience more accurately than those of
the individuals from whom the neural activity was recorded.

Our finding differs subtly but importantly from those in which
population responses are better predicted from a sample’s neural
activity than from its self-reports4,9. Such findings may, in part,
be explained by the fact that the behaviours of the population and
sample are being evaluated with somewhat different measures
(for example, expressing a preference for a stimulus versus
actually consuming it). In the SuperBowl experiment described
here, the behaviours performed by both the sample and
population are identical, and their responses are well correlated.
Note, however, that it is the population ratings that link most
strongly to the reliability of neural responses, even though the
sample is the source of the measured reliability. We have not
found a precedent for the present observation that neural signals
explain the population response better than the response of the
sample.

One may conclude from the results that stimuli which evoke
highly reliable neural responses among a small sample also do so
in a larger audience. However, this interpretation does not
account for the finding of significantly lower predictability of the
sample ratings, which cannot be fully explained from the
reduction in sample size. We conjecture that this finding is
related to the preference heterogeneity of the advertising stimuli
used: the high variability observed in the sample ratings may be
attributed to differing subjective values2,22,23 or other variables
such as social conformity24,25. Such idiosyncratic processes may
involve complex reasoning or emotional considerations that take
relatively long to evaluate and presumably fail to yield immediate
and reliable EEG signals. Through population aggregation,
however, these idiosyncratic preferences tend to average out
and one is left with what is shared by the large audience.
Therefore, the surprising finding of this study is that reliability of
relatively fast neural processing is a genuine predictor of the
common preferences of a large population.

Preference heterogeneity has been studied extensively in the
context of economic risk-taking, often focusing on the neural
underpinnings of individual differences in decision-making26. In
the marketing literature, preference heterogeneity has been
reported to affect perception of advertising27,28. However, we
are not aware of literature analysing the neural basis of preference
heterogeneity with natural stimuli or, in particular, video
advertisements.

Traditional neuroimaging work on the evaluation of preference
or ‘value’ uses fMRI and points to elevated activity in specific
subcortical regions29. In particular, activity in the ventral striatum
and medial prefrontal cortex (mPFC) correlates with individual
subjective value22 and the purchasing behaviours of a larger
population4. Such neural activity encodes information that is
predictive of decisions following stimulus presentation7,30 even
when measured in the absence of a choice31, thus pointing to a
certain level of automatic stimulus evaluation. The present
findings highlight the importance of reliable short-latency
responses, suggesting similarly automatic stimulus processing.
However, the present study points to neural processing of more
superficial cortical areas, which are the main contributors to the
EEG32. Note also that it is the reliability of temporal dynamics,
and not necessarily the strength of response, that is carrying the
predictive information here. It is also worthwhile to point out that
previous efforts at analysing reliability of electrophysiological

signals required subdural electrodes and focused on slow
modulations (in the order of 10 s) of oscillatory activity, in
particular, the gamma band33, which is known to correlate with
the BOLD response34. In contrast, here we used fast evoked
responses measured on the scalp, which generally do not coincide
with BOLD or gamma activity35.

We observed that reliability of neural experience is related to
subsequent preferences. However, note that in the Twitter and
Nielsen studies, our behavioural measures index general response
independent of valence; strictly speaking, the Tweet rates and
Nielsen ratings are not reflective of ‘liking’ the stimulus, but
rather being compelled to respond to or continue viewing it,
respectively. Although it may be argued that tweeting about or
tuning into a programme are behaviours consistent with ‘liking’
it, they are certainly not sufficient conditions for doing so. The
present analysis has implicitly grouped both positive and negative
valences into the dependent measure being predicted: for
example, Twitter commentary to the episode expressed both
positive as well as negative sentiment. It is thus possible that
reliability correlates more generally with, for example, interest,
rather than preference itself. On an anecdotal level, we do point
out that the SuperBowl ad receiving the lowest population rating
(unambiguously denoting a dislike) among all 20 ads also elicited
the lowest neural reliability (see Supplementary Table 2).

It is interesting to contrast the present results with the
literature on the neural basis of individual differences36–38. There,
the focus is on capturing neural features which vary across
individuals and thus explain differences in individual behaviour.
Here, we focus on the commonality in neural responses,
effectively ignoring individual differences, to obtain a predictor
of group behaviour. The component analysis technique used here
to compute neural reliability explicitly looks for shared neural
components, and the resulting quantity links closely to
population measures which reflect shared behaviours (that is,
trends) that emerge after aggregation of large samples.

The broad fMRI activations observed in sensory and associa-
tion cortex suggest that modulations of high-level visual and
auditory processing underlie the measured neural reliability. For
example, the activations in bilateral temporal cortex may reflect
processing of complex auditory speech information (both
linguistic and prosodic) during advertisements39. The activated
region also included areas of occipitotemporal cortex recruited by
the processing of dynamic visual stimuli40,41. Increased BOLD
activation was also found in the superior parietal lobules and
precuneus, which mediates attention to auditory and visual
stimuli42–44. In addition, this region has also been associated with
self-referential processing, imagery and memory45, processes that
may be elicited during the viewing of well-crafted advertising.
Meanwhile, activations of the ACC/mPFC have been implicated
in the evaluation of conflict and emotions46, which may have
occurred more frequently during the less likable advertisements.
We caution, however, that all of these observed BOLD activations
were found to co-vary with the EEG reliability of a separate
group of subjects; as such, we refrain from inferring that the
encephalographic signal components driving our preference-
linked measure of neural reliability originate from these fMRI-
identified regions. Although the topographies of the EEG
components have been found to be fairly reproducible across
various stimuli (see Fig. 5), the specific co-varying BOLD
activations may be stimulus-dependent. Disparate neuro-
modulatory processes may manifest in similar patterns of
cortical generators which drive the observable EEG32.

It is possible that personal preferences yield changes in the
individual’s level of attention or engagement. Such ‘top-down’
modulation may then affect the strength47 and thus the reliability
of neural responses associated with stimulus-locked neural
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processing. However, if individual preferences were to guide
modulation of sensory processing, then we would have expected
neural reliability to predict the sample preferences equally well, if
not better, than the population preferences. Alternatively, it may
be that individuals prefer stimuli precisely because the narratives
drive the brain strongly and reliably. Such ‘bottom-up’ influence
would evidently be well reflected in the preferences of large
audiences; however, in the small sample, this sensory processing
may be masked by the idiosyncratic preferences or biases of
particular individuals.

The findings of the SuperBowl advertisement study suggest
that stimuli which we judge favourably may be those to which
our brains respond in a stereotypical manner that is shared
by our peers. Viewed in another manner, if one is able to evoke
reliable neural activity from one’s audience, then that audience is,
as a whole, more likely to find one’s message favourable.
However, the present data do not permit causal inference about
the specific variables mediating the reliable patterns of
activity. One possibility is that narrative elements of the stimuli
directly bring about neural reliability. Indeed, disrupting
the narrative structure for stimuli is known to reduce ISC for
BOLD48 and evoked responses16. But it is also possible that other
aspects of the stimulus (for example, overall production quality)
correlate with population preference49, with this hidden variable
explaining the link between advertisement ratings neural
reliability. In this case, if one were to pinpoint the stimulus
features that drive neural reliability, it would be possible to
make the prediction of population behaviour directly from a
content analysis of the stimulus (that is, without measuring
neural responses).

Regardless of the source of the reliability-preference link, the
finding that naturally occurring audience behaviours may be
forecast from scalp measurements bears potentially tremendous
relevance for fields outside the basic sciences such as education,
marketing and media, which stand to gain from the predictive
power of neural reliability.

Methods
Subjects and stimuli. For the encephalography recordings, 16 healthy subjects
(nine females and seven males, ages 19–32, mean of 26 years) viewed the pilot
episode of ‘The Walking Dead’ along with intermittent commercials as aired in the
original broadcast. An additional 12 subjects (gender balanced, ages 20–29, mean of
25 years) viewed and subsequently rated (on a scale of 1–10) 10 advertisements
initially aired during the 2012 SuperBowl (one subject was common to both
experiments). To validate the results, the same subjects then viewed 10 ads from the
2013 SuperBowl. These 20 video clips were randomly selected and spanned the range
of viewer ratings from the Facebook-USA Today Ad Meter (see Supplementary
Table 2). For the fMRI recordings, a separate 14 subjects (six females, ages 18–22,
mean of 20 years) viewed the same set of 2012 and 2013 SuperBowl advertisements.
Subjects provided written informed consent in accordance with the procedures
approved by the Institutional Review Boards of the City College of New York (EEG
study) and the Georgia Institute of Technology (fMRI study).

EEG data collection. Study participants viewed the stimuli in a darkened,
electrically and acoustically shielded room. Sound was played back with PC
loudspeakers adjusted by each subject to a comfortable listening volume. Subjects
were instructed to pay attention to the stimuli and to minimize overt movement.
Before viewing, subjects were fitted with a 64-electrode cap placed on the scalp
according to the international 10/10 standard for EEG, which was recorded with a
BioSemi ActiveTwo system (BioSemi, Amsterdam, The Netherlands) at a sampling
frequency of 512 Hz and 24 bits per sample. To subsequently correct eye-move-
ment artifacts, we also recorded the electrooculogram (EOG) with four auxiliary
electrodes (one adjacent to and one below each eye).

EEG preprocessing. All data processing was performed automatically (that is,
with no manual intervention) offline in the MATLAB software (MathWorks,
Natick, MA, USA). After extracting the EEG/EOG segments corresponding to the
duration of each stimulus, the signals were high-pass filtered (1 Hz cutoff), notch
filtered at 60 Hz, and down sampled to 256 Hz. Eye-movement related artifacts
were corrected by linearly regressing out the four EOG channels from all EEG
channels. The regression was performed on non-overlapping 5-s blocks for The
Walking Dead data set, and on the entire data record for each SuperBowl adver-
tisement (that is, a 30-s ‘window’). After the correction of eye-movement artifacts,
channels whose average power exceeded the mean channel power by four standard
deviations were excluded from analysis, with this process repeated four times in an
iterative scheme. Similarly, within each kept channel, samples whose squared-
amplitude exceeded the mean-squared-amplitude of that channel by more than
four standard deviations were rejected. Again, this procedure was iterated four
times for each channel. In addition, we rejected every sample within 100 ms of the
identified artifactual samples. As our viewing paradigm did not constrain the
subjects’ eye movements during the relatively long stimulus durations, the data
contained a larger proportion of artifacts than that seen in conventional, short-
trial-based experiments. The proportion of data rejected for each scene of the
Walking Dead episode is shown in Supplementary Fig. 3: there is no significant
correlation between the time series and the log tweets per scene (r¼ 0.04, P40.05),
nor between the time series and the prediction of log tweets per scene from
neural reliability (r¼ 0.002, P40.05). Meanwhile, the proportion of data rejected
for each SuperBowl ad is listed in Supplementary Table 2: there is no
significant correlation between the proportion of data removed for each ad and the
prediction of rating from the ISC (r¼ 0.24, P40.05), nor between the proportion
of data removed for each ad and the population rating (r¼ 0.21, P40.05), nor
between the proportion of data removed and the sample rating (r¼ 0.09, P40.05).
In summary, the median (across subjects) percentage of samples removed was
15.98% for the Walking Dead data set, 16.28% for the 2012 SuperBowl data
set and 19.95% for the 2013 SuperBowl data set. Rejected samples were
marked as missing data (‘NaN’), and the analysis proceeded by computing means
and covariances with the nanmean() and nancov() MATLAB functions. As
detailed in the next section, the method employed to compute reliability
is rooted in covariance matrices whose sensitivity to outliers is well known;
thus, we opted for a stringent outlier rejection to ensure robust covariance
estimation.

Neural reliability computation. To compute the neural reliability elicited by a
given stimulus, we employed the component analysis approach of Dmochowski
et al.16, whose mathematical details are described below. The technique is similar to
canonical correlation analysis50 and its generalizations to multiple subjects51,
differing in that it uses the same projection for all data sets. It is conceptually
similar to the ‘common canonical covariates’ method52, which is based on a
maximum-likelihood formulation, as opposed to the generalized eigenvalue
problem developed in ref. 16.

For a given stimulus viewed by N subjects, we have a set of N data matrices
{X1,y, XN} where Xn conveys the spatiotemporal neural response of subject n. We
seek to project the data of all subjects onto a common space such that the resulting
projections exhibit maximal ISCs across the subject pool. To that end, let pi ¼ {pi1,
pi2} ¼ {(1,2),(1,3),y,(N� 1,N)} denote the set of all P¼N� (N� 1)/2 unique

0.5

–0.5
uV

0

1 2 3

Figure 5 | Scalp projections of the three most-reliable dimensions of

neural activity. (a) As measured during viewing of ‘The Walking Dead’

pilot, (b) as measured during viewing of 10 advertisements from the 2012

SuperBowl (c) same as b but from the 2013 SuperBowl.
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subject pairs. We then form the aggregated auto- and cross-covariance matrices as:

R11 ¼
1

PT

XP

i¼1

Xpi1 XT
pi1

R22 ¼
1

PT

XP

i¼1

Xpi2 XT
pi2

R12 ¼
1

PT

XP

i¼1

Xpi1 XT
pi2
; ð1Þ

where T is the number of time samples (columns) in Xn and T denotes matrix
transposition.

We seek to find a projection vector w which maximizes the ISC between
subject-aggregated data records:

wT R12w

wT R11wð Þ1=2 wT R22wð Þ1=2 ð2Þ

It is shown in ref. 16 that assuming wTR11w ¼ wTR22w, the solution to
equation (2) is a generalized eigenvalue problem:

lðR11 þR22Þw ¼ R12w; ð3Þ

where l is the generalized eigenvalue corresponding the maximal ISC,
encompassing all subject pairs, elicited by the stimulus. Note that the assumption
wTR11w ¼ wTR22w does not limit generality, as one can simply define
pi
0 ¼ {(1, 2),y, (N� 1, N), (N, N� 1),y, (2, 1)} and then substitute pi

0 in
equation (1) to ensure that R11¼R22; this was done in our analysis. Moreover,
when computing the generalized eigenvalues of equation (3), we regularize the
pooled auto-covariance by keeping only the first K¼ 10 dimensions. This value of
K roughly corresponds to the ‘knee’ of the pooled auto-covariance eigenvalue
spectrum in the spectral representation of R11þR22.

There are multiple non-orthogonal solutions to equation (3), whose associated
generalized eigenvalues are ranked in decreasing order of aggregated ISC: l1 4 l2

4 y 4 lD, where D is the number of electrodes. We take the first C¼ 3 such
solutions and linearly sum their corresponding eigenvalues to yield the estimate of

the population measure:

predicted population response ¼ b0 þ
XC

i¼1

bili; ð4Þ

where bi is the regression coefficient relating the aggregated ISC in dimension i to
the dependent population measure, as determined by linear least-squares. Note that
due to the small sample size of the SuperBowl data set, the ISCs there were
uniformly summed across components to yield the estimate of neural reliability
which was then directly correlated with the population measure:

neural reliability ¼
XC

i¼1

li: ð5Þ

For The Walking Dead data set, we learned the optimal projections on data
encompassing all scenes, and then applied these projections back onto the data of
each scene to yield the time-resolved reliability in each component. In other words,
the covariances in equation (1) were formed using data from all scenes, yielding the
optimal w, which was then applied to equation (2) but with the covariances there
formed using only data for the desired segment of the stimulus. For the SuperBowl
data set, we learned the optimal projections by concatenating the neural responses
of all ads into a single data matrix per subject. Once again, this combined data was
used to construct the covariance matrices and learn the optimal projection vectors.
We then projected these optimized filters onto the data from each advertisement to
compute the reliability exhibited by the participants’ during that ad.

Spatiotemporal characteristics of EEG components. Here we detail the spatial
and temporal properties of the components formed from the optimal spatial
filters w. Let us construct a weight matrix W whose columns represent the first C
generalized eigenvectors in equation (3). The projections of the resulting compo-
nents onto the scalp data are given by Parra et al.53:

A ¼ RWðWTRWÞ� 1; ð6Þ

where R¼R11þR22 is the pooled auto-covariance. The columns of A are termed
‘forward models’ and inform us of the approximate location of the underlying
neuronal sources (up to the inherent limits imposed by volume conduction
in EEG).
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Figure 5 depicts these forward models for the stimuli used in the study. The scalp
projections stemming from The Walking Dead study bear a close resemblance to
those found in ref. 16: a symmetric first component with a dipolar distribution
consisting of frontocentral and occipital poles, a second component exhibiting
bilateral poles at the temporal electrodes, and an asymmetric third component
marked by frontal and right-parietal poles. Meanwhile, the forward models of the
reliability-maximizing components from the SuperBowl study reveal a highly
congruent first component topography, while deviating somewhat in the second and
third components. For example, the frontal pole of the third component from the
2012 ads is slightly more posterior. Such disparities in scalp topographies may
reflect a re-distribution of canonical sources among the three components.

Meanwhile, Fig. 6 summarizes the temporal properties of the components used to
construct the measure of neural reliability. The 1/f temporal power spectrum of these
components is typical for encephalography (Fig. 6a). A temporal coherence analysis of
the signals used to measure neural reliability indicates that reliability is driven by
immediate evoked responses of 2 s or less and can be as fast as as 100 ms (Fig. 6b).
Coherence across subjects—a frequency-resolved measure of correlation—is strongest
at low frequencies, but statistically significant values can be found at frequencies as
high as 10 Hz, consistent with previous findings using intra-cortical recordings33.

fMRI data collection. For the fMRI recordings, we used the same two sets of ads
from the 2012 and 2013 SuperBowls. All MRI data were acquired on a Siemens
Magnetom Trio 3T scanner. A high-resolution T1 structural scan (3D MPRAGE,
TI¼ 850 ms, flip angle¼ 9�, 1 mm isotropic resolution) was acquired before each
subject viewed the ads. Before functional scanning, subjects were instructed to pay
attention to the stimuli. Images were acquired using a whole-brain echo-planar
imaging sequence (transverse orientation, TR¼ 2,000 ms, TE¼ 30 ms, flip
angle¼ 90�, field of view¼ 204 mm) of 37 interleaved slices with 3 mm isotropic
resolution and a 17% gap. Data were preprocessed to correct for slice timing to the
first slice with a Fourier interpolation, using AFNI’s 3dTshift tool. Head move-
ments were then corrected using AFNI’s 3dvolreg routine. Next, the functional data
were smoothed with a 6 mm full-width half-maximum Gaussian kernel to reduce
noise. Finally, data were transformed to the MNI standard space using FSL’s FLIRT
software using a 12-parameter trilinear affine transformation. The EEG reliability
measure (see equation (5)) for each advertisement was used as an amplitude-
modulated block-design regressor in a general linear model of the fMRI data
including six motion parameters as covariates, using AFNI’s 3dDeconvolve tool.
Whole-brain group level analysis was performed using AFNI’s 3dttest routine, with
mixed effects inference on a one-sample t-test using individual beta values. AFNI’s
3dClustSim tool was used with an estimated smoothing of 9.16 mm (obtained with
AFNI’s 3dFWHMx routine) to perform 10 000 Monte Carlo simulations to find a
cluster size threshold (40 voxels) with a corrected family-wise error rate of 0.05;
P(uncorrected)¼ 0.002. To compute the BOLD-ISC for each advertisement, we
concatenated the BOLD time series of all significant voxels shown in Fig. 4, and
then computed the correlation coefficient between all subject pairs. The resulting
aggregated ISCs were then correlated with the population ratings.

Twitter data collection. Through the Crimson Hexagon service, we obtained a
listing of all episode-related tweets which originated during the initial broadcast of
The Walking Dead pilot, that is, all tweets from 10/31/2010 9:00–10:00 PM EST
containing a relevant hashtag, referencing a show-specific Twitter account, or
simply referencing the show’s name. The listing was filtered to retain only those
tweets which directly referenced episode content (that is, 1,947 of 19,000 total
tweets). Each retained tweet was then manually linked to the corresponding
scene(s) by inspecting the message content as well as the tweet timestamp. This
procedure was performed by three research assistants who were blind to the
hypothesis of the study. Approximately 61% of tweets could be unambiguously
linked to one scene only; when ambiguous, the tweet was linked to multiple can-
didate scenes (that is, in general, the mapping from tweet to scene was one-to-
many). The distribution of number of scenes referenced per tweet is shown in
Supplementary Fig. 4. The tweet count of each scene was computed by summing
the number of tweets referencing that scene. To subsequently analyse the rela-
tionship between neural reliability and Twitter reaction, we divided the tweet
counts (incremented by one to handle forthcoming log operation) by scene
duration to compensate for varying scene length, yielding a tweet-frequency.
Finally, we logarithmically transformed the tweet rate to arrive at the dependent
measure onto which neural reliability was regressed.

Nielsen data collection. Courtesy of AMC, we obtained the Nielsen ratings for
each minute of the initial airing of pilot episode of The Walking Dead. We summed
the ratings across age categories (18–49 and 25–54) and method of viewing (live
versus digital video recorder). The regression results when predicting the viewer-
ship within each age category are reported in Supplementary Table 1.

Ad Meter data collection. We obtained publicly available population-averaged
scores for all 2012 and 2013 SuperBowl advertisements via the Facebook-USA Today
Ad Meter service (Supplementary Table 2). An online panel of over 7,000 participants
rated each advertisement on a scale of 1–5 for the 2012 commercials and on a scale of
1–10 for the 2013 commercials. We analysed each set separately and then combined

the results. For the combined analysis, the ratings of the 2012 commercials were
linearly transformed under the assumption that the quality was comparable to that of
2013: the 2012 ratings were scaled and offset such that the entire set of ratings from
2012 matched the ratings from 2013 in mean and standard deviation.
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