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ABSTRACT

Background: Computational models of current flow during Electroconvulsive Therapy (ECT) rely on the
quasi-static assumption, yet tissue impedance during ECT may be frequency specific and change adap-
tively to local electric field intensity.
Objectives: We systematically consider the application of the quasi-static pipeline to ECT under condi-
tions where 1) static impedance is measured before ECT and 2) during ECT when dynamic impedance is
measured. We propose an update to ECT modeling accounting for frequency-dependent impedance.
Methods: The frequency content on an ECT device output is analyzed. The ECT electrode-body impedance
under low-current conditions is measured with an impedance analyzer. A framework for ECT modeling
under quasi-static conditions based on a single device-specific frequency (e.g., 1 kHz) is proposed.
Results: Impedance using ECT electrodes under low-current is frequency dependent and subject specific,
and can be approximated at >100 Hz with a subject-specific lumped parameter circuit model but at
<100 Hz increased non-linearly. The ECT device uses a 2 pA 800 Hz test signal and reports a static
impedance that approximate 1 kHz impedance. Combined with prior evidence suggesting that con-
ductivity does not vary significantly across ECT output frequencies at high-currents (800—900 mA), we
update the adaptive pipeline for ECT modeling centered at 1 kHz frequency. Based on individual MRI and
adaptive skin properties, models match static impedance (at 2 pA) and dynamic impedance (at 900 mA)
of four ECT subjects.
Conclusions: By considering ECT modeling at a single representative frequency, ECT adaptive and non-
adaptive modeling can be rationalized under a quasi-static pipeline.

© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

assumed negligible, including at the electrodes/tissue interfaces (cf
[5]). The quasi-static assumption is common in simulations of

1.1. Questions about the quasi-static assumption in ECT

The quasi-static assumption is ubiquitous in modeling of current
flow through the body during electrical stimulation [1—4]. Under
the quasi-static assumption, tissue current flow is linear with
applied stimulation intensity and independent of frequency. This
follows from tissues being assigned fixed conductivities (indepen-
dent of frequency or intensity) and tissue permittivity (capacitance)
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Electroconvulsive Therapy (ECT) [6—8]. Practically, such simplifi-
cations lend themselves well to the finite element method (FEM)
approaches, including models representing detailed anatomy [8,9].

Based on the resulting current flow (electric fields) across tissue
including the brain, either non-linear functions (e.g., action po-
tentials, connectivity; [10,11]) or the quasi-uniform assumption
[12—14] are then applied to predict changes in brain function. For
example, in ECT modeling the quasi-uniform assumption can be
applied with a threshold. Nevertheless, current flow itself is
conventionally assumed insensitive to stimulation intensity or
frequency.

Yet, for skin impedance, the dependence on frequency along
with intensity has been documented for decades [15,16], leading to
non-linear lumped parameter models (e.g. with layer/structure-
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specific complex impedance [17]). This is further complicated by
the changing state of skin (e.g., with environment, time) and the
interaction with the electrode/electrode-skin interface — these
factors can be avoided in experimental studies characterizing skin
impedance but are central in clinical measurements intended to be
sensitive to proper electrode set-up. Models of transcranial elec-
trical stimulation maintain skin at a fixed simple conductivity.
We previously suggested that features specific to ECT dose,
namely very high intensity (compared to low-intensity tES such as
tDCS/tACS) and application of current through the skin (compared
to invasive approaches or magnetic stimulation), creates special
conditions of very high electric fields in the skin, and that these in
turn change skin conductivity. This is clear from clinical measure-
ments of high “static impedance” (measured with bespoke low-
intensity test currents prior to ECT) compared to a low “dynamic
impedance” (measured during ECT high currents). To model this
with FEM, we developed adaptive models of ECT [18] whereby
superficial skin conductivity increases with local electric field. This
modeling pipeline included both individual anatomy and individual
skin properties to match clinical impedance data. Notwithstanding
the need to iteratively search for result that satisfy adaptive con-
straints, the adaptive models physics remained quasi-static. How-
ever, the nuanced nature of impedance during ECT also raises a
question about the further role of frequency in skin impedance.

1.2. Anovel approach for ECT modeling based on one representative
frequency

To fully simulate non-linear skin (and skin/electrode interface)
properties is both computationally intractable and muddled by lack
of skin impedance data for ECT waveforms. On the other hand, how
can complex skin impedance be ignored if it affects impedances
reported by ECT devices and current flow patterns? Here we resolve
these issues by developing an ECT modeling pipeline that is trac-
table, requires minimal parameterization, adaptive [18], quasi-
static, and matches subject-specific measurements without
ignoring complex skin impedance. This novel approach is based
around modeling conductivity at a device-specific single frequency.
The explanation below is based on selecting 1 kHz as this
frequency.

Our objectives are limited to the study of the physical properties
of ECT, including subject specific models, and the value of param-
etrizing static impedance and dynamic impedance. At low current
intensities used for static impedance, we show there is a high de-
gree of frequency sensitivity. We consider that the staticimpedance
as reported a ECT device can be modeled by assigning tissue con-
ductivities for one frequency — in this case 1 kHz. At high current
intensities, we suggest tissue conductivity is frequency insensitive
between ~0.01 and 2 kHz, a range that spans the frequency content
of the ECT waveform and includes the representative 1 kHz fre-
quency. Thus, using two different rationales, considering tissue
conductivity at 1 kHz addresses the static impedance and ECT dy-
namic impedance cases.

For adaptive ECT FEM models [ 18], there are three tissue cases to
consider. 1) For each non-skin compartments (eg. skull, CSF/
meninges, gray and white matter), we assign fixed and subject-
invariant conductivities. These conductivities can be considered
at 1 kHz, or rather to be frequency independent so applicable to all
relevant frequencies (~0.01—2 kHz) [19]. 2) Deep-skin is assigned a
fixed subject-specific conductivity, which can similarly be consid-
ered representative at 1 kHz or frequency-independent. 3) Super-
ficial skin is adaptive, decreasing as local electric field increases. At
low-current, this conductivity is specific to 1 kHz, while at high
intensities this conductivity represents ~0.01—2 kHz (as conduc-
tivity does not vary in this range) which spans 1 kHz. The transfer
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function (see Methods) between superficial skin electric field and
conductivity is thus for 1 kHz.

For all tissues, permittivity (capacitance) is assumed insignifi-
cant, and any frequency dependent conductivity accommodated
through the representative-frequency assumptions. The electrodes
are fixed conductivity. The impact of the electrode-skin interface
(e.g., skin preparation; [18]) is captured by underlying superficial-
skin properties. In sum, with all compartments modeled by con-
ductivity at 1 kHz (or assumed frequency-independent) the quasi-
static pipeline can be applied to predict ECT current flow and
impedances.

1.3. Implications for explaining ECT devices

The validity and application of modeling conductivities at a
representative-frequency (in the device specific case of 1 kHz) as
supported with physical measurements of impedance is the basis of
this paper. Regarding expediency, this approach does not require
technical changes to either standard or adaptive ECT modeling
workflows [18] except a quasi-static pipeline is not applicable by
considering conductivities at 1 kHz. In regards to skin biophysics,
we avoid decades-long debate on the (sub)cellular mechanisms
[17,20] governing the skin's complex impedance. We only antici-
pate our representative-frequency approach models local tissue
conductivity as it impacts relevant ECT physics.

Are ECT devices designed to report a static impedance approx-
imating the impedance at a single frequency (e.g. 1 kHz) - so that
any differences between devices [18] reflect different test fre-
quencies? No. Rather, ECT devices employ heuristic circuits, test
signals, and processing to report a value of ‘static impedance’. Static
impedance is intended only to alert the operator to poor electrode
set-up and the possibility of a dynamic impedance above the ECT
device voltage compliance. Only in this last sense is correlation
between static and dynamic impedance currently important in
practice (see Ref. [18]).

Are ECT devices designed to report a dynamic impedance
approximating the impedance at ~1 kHz? They are not. Rather, ECT
devices report a value of ‘dynamic impedance’ determined from the
required peak voltage to generate ECT current pulses
(~800—900 mA). We anticipate the impedance at 1 kHz under high
intensity approximates the reported dynamic impedance by the
ECT device.

2. Methods

2.1. Thymatron device waveform analysis during static and
dynamic impedance measurements

We used resistors representing typical static (2200 kQ) and
dynamic (300 Q) impedances, and measured the device output
voltage. The current output over time was calculated by dividing
the voltage by the resistance of the resistor for each impedance
measurement. A Fast Fourier Transform was computed using the
Matlab fft() function [21]. The two sided amplitude spectrum of the
FFT was converted to a single sided amplitude spectrum. We also
simulated idealized ECT outputs (20 Hz, alternating pulse polarity)
with varied pulse durations (0.25 m's, 0.5 m s, 1 m s) and similarly
computed the frequency spectrum.

2.2. Experiment series 1: Static impedance vs. impedance spectrum
experiments on healthy subjects

We conducted a study to evaluate the impedance using adhesive
ECT electrodes at low currents in healthy subjects (n = 10). The
study was conducted in accordance with protocols and procedures
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approved by the Institutional Review Board of the City University of
New York. All experiments were made using disposable, semi-
adherent electrodes (Thymapads, Somatics, LLC, Venice, FI). The
electrode preparation techniques included cleaning skin with sa-
line and Pretac application (Pharmaceutical Innovations, Newark,
New Jersey). Pretac was applied to the disposable electrode sur-
faces (300—500 pL) before placement on the skin. Electrodes were
positioned according to the standard bifrontal placement [22] with
careful attention by avoiding the hairline to ensure uniform
electrode-skin contact.

Skin impedance spectrum was measured using a FRA51615
frequency response analyzer (NF Corporation, Yokohama, Japan).
Over three sequential trials, impedance spectrum measurements
for each subject were carried out within the frequency range of
1-1000 Hz for 1V, then 10—1000 Hz for 100 mV and then from 10
to 1000 Hz for 1 V. Before and after three impedance spectrum
measurements, each subject's ‘static impedance’ was measured
using the Thymatron System IV (Somatics LLC) ECT device.

The collected skin impedance spectrum data was decomposed
to real and imaginary constituents of the 1-1000 Hz 1 V data set
using EIS fitting software (EIS Spectrum Analyzer, (Bondarenko A.
S., Ragoisha G. A. (2013) EIS Spectrum Analyser (1.0) Research
Institute for Physical-Chemical Problems Belarusian State Univer-
sity) to fit an R-RC circuit model [23]. The EIS Spectrum analyzer
software searched for best fit for values of components in the
model so that the equivalent circuit represents the dataset using
the Levenberg-Marquardt algorithm. After identifying the equiva-
lent circuit (Rs, Rp and Cp) through the EIS Spectrum Analyzer for
each subject, the impedance of these circuits was calculated for
1 kHz (NI Multisim 14.1, 1 kHz sinusoidal current source).

2.3. Experiment series 2: Influence of frequency or intensity on
resulting impedance

A study to evaluate the influence of frequency or intensity on the
resulting impedance using healthy subjects (n = 10) was con-
ducted. For the purposes of this experiment, we applied the same
frequency and pulse pattern that as used during dynamic imped-
ance measurements (Fig. 2 B2) but at a low current intensity
comparable to that used in static impedance measurement.

An arbitrary function generator (Tektronix AFG1022) was pro-
grammed to generate trains of rectangular, constant-current pulses
with alternating polarity. The arbitrary function generator was
connected to linear current isolator (Soterix Medical LCI) and the
output of the current isolator was connected to the adherent
electrodes (Thymapads, Somatics, LLC, Venice, FI). The skin was
cleaned with saline and Pretac (Pharmaceutical Innovations,
Newark, New Jersey) was applied. Electrodes were positioned ac-
cording to the standard bifrontal placement, avoiding the hairline,
with careful attention to ensure uniform electrode-skin contact. A
biphasic waveform with amplitudes of 20 puA or 1 mA at 10 Hz with
3 different pulse widths (0.25 m s, 0.5 m s, 1 m s) was applied to
each subject. Here, calculated impedance was the measured peak
voltage divided by the applied peak current.

2.4. BF clinical ECT data set, imaging and segmentation

As described previously [18], anonymized data was re-analyzed
from a North Shore- Long Island Jewish Health System ECT trial
series [24] using bifrontal (BF) ECT. 4.2 x 4.9 cm disposable adhe-
sive electrodes were used (Thymapads, Somatics LLC). Each subject
received 6—10 ECT sessions with electrodes configured in a
bifrontal montage with Pretac preparation. Static impedances were
averaged across the first stimulation of each session, and dynamic
impedances were averaged across the sessions where the seizure

609

Brain Stimulation 16 (2023) 607—618

was generated for every stimulation. High resolution T1-weighted
anatomical MRIs were deidentified from 4 subjects receiving ECT
(subjects #21908, #22615, #22035, #21778). MR imaging exams
were conducted at North Shore University Hospital on a 3T GE HDx
scanner (General Electric, Milwaukee, WI, USA). Structural scans
were acquired in the coronal plane using a three-dimensional
spoiled gradient sequence (TR 75 m s, TE 3 m s,
matrix = 256 x 256, FOV = 240 mm), producing 216 contiguous
images (slice thickness = 1 mm) through the whole head.

Based on algorithms in SPM8 [25], updated for volume con-
duction models [26], an automated segmentation pipeline was
used to create initial image masks of scalp, skull, air, meninges/
cerebrospinal fluid, gray matter and white matter (Fig. 1 B). Addi-
tional manual segmentation was applied to correct for noise, ali-
asing artifacts, and to separate superficial scalp and deep scalp
layers (approximately bisecting the scalp mask).

2.5. General modeling approach

We used the same selected subjects with the same general
‘adaptive’ FEM approach developed and described in our previous
study [18] except with revised parameters (Table 1) of Equation (1)
to reflect simulation at 1 kHz. Unless otherwise indicated,
segmented tissues were assigned subject-independent and fixed
(not electric field dependent) electrical conductivity [27]: skull
(6 = 0.01 S/m), gray matter (o 0.276 S/m), white matter
(0 = 0.126 S/m), meninges/cerebrospinal fluid (¢ = 0.85 S/m), and
air (¢ = 1*10~" S/m). Deep-scalp layer was assigned a subject-
specific but fixed (not electric field dependent) conductivity (o
ps) between 4.5¥10~% S/m and 0.008 S/m. Local superficial-scalp
layer conductivity (oss) was a function of local scalp electric field
(Ess) as given by:

Gss={

Where og is subject-specific maximum superficial-scalp conduc-
tivity. Ess varies across the scalp surface such that osg then co-
varies across the superficial-scalp (e.g., higher near electrodes).
Across subjects, four parameters (A, B, C, D) are fixed (Table 1). For
each subject two model parameters were individualized: deep-
scalp layer conductivity (ops) and maximum superficial-layer
conductivity og. In addition, Eg is subject specific as governed
by Equation (1).

Stimulation electrodes were modeled in SolidWorks (Dassault
Systemes Corp., Waltham, MA). We represented ECT adhesive pad
electrodes with dimensions of 42 x 4.9 cm and thickness of
~1.7 mm, and gel conductivity of 0.018 S/m. We modeled the
bifrontal (BF) electrode placement as practically applied in the
corresponding clinical series: the centers of both electrodes on the
first imaginary line that originates at the lateral canthus and pro-
jects up parallel to the facial midline. The long edge of the elec-
trodes aligned parallel to the first imaginary line such that the short
edge of the pad electrodes is approximately parallel to the hori-
zontal plane and right above supraorbital ridge (approximately
above the eyebrow). Depending on the subject, the center of the
electrodes is then ~3—5 cm above the canthus of the eye.

To summarize, the updated adaptive quasi-static-pipeline FEM
ECT simulation of current flow is based on six assumptions.

A, 0< ESS <B
C*Ess — D,B < Egs < Eg
Ogs, Ess > Egg

(Equation 1)

1. Scalp is divided into two layers: deep-scalp and superficial-
scalp.
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A. SS MRI Segmentation (Automated + Manual) B. 3-D Tissue Structures and Electrode Placement C. Volumetric Mesh
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Fig. 1. Revised adaptive computational pipeline for ECT current flow FEM models based at 1 kHz. In our previous study [17], we developed the first image-derived numerical
models of transcranial electrical stimulation (tES) incorporating local changes in tissue conductivity in response to local current flow (electric fields). Here, we revised the transfer
function based on our experimental results and to reflect the emphasis of our simulation at 1 kHz. (A) T1-weighted anatomical MRIs were collected from ECT patients with static
impedance and dynamic impedance data. (B) Volume conductor models were created preserving image resolution using methods previously developed for low-intensity tES
[8,26,27] - however, here, we divided scalp into Superficial Scalp (SS) and Deep Scalp (DS) compartments. Skull, meninges, gray matter, and white matter compartments were
assigned standard fixed tissue conductivities. Clinical electrode montages were reproduced (e.g., BF) with boundary conditions corresponding to static impedance (I,, = 2 pA) and
dynamic impedance (I, = 900 mA) testing. (C) For each subject and electrode montage, a volumetric mesh was generated from the segmented data. (D) The model was initialized
with a deep scalp conductivity (ops) and a maximum superficial scalp conductivity (o). Independently for 2 pA and 900 mA current, an iterative model then computed current
flow based on tissue conductivities, updated superficial scalp conductivity (o) in each element based on local electric fields using a transfer function, and then recalculated brain
current flow (blue dashed square). The model converged after ~1 k iterations, producing a model prediction of static impedance (for 2 pA) and dynamic impedance (for 900 mA). (E)
Model predicted static and dynamic impedance were compared with clinical static and dynamic impedance from the subject. If there was any significant mismatch, the model was
reinitialized with updated deep scalp conductivity (ops) and a maximum superficial scalp conductivity (6g5), and the FEM was re-run until convergence (blue dashed square). When
model static and dynamic impedance matched clinical data, a patient specific deep scalp conductlvnty (GDS) and a maximum superficial scalp conductivity (o5) was set. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

2. Deep-scalp layer conductivity is isotropic, fixed and assigned a that it is applicable to all relevant frequencies, including the
subject-specific value. This conductivity can be considered at representative frequency of 1 kHz.
1 kHz or simply to be frequency independent (across a relevant 5. Electrode resistance is fixed and low (compared to body resis-
range) so that it is applicable to all relevant frequencies, tance) with a continuous interface with the skin.
including the representative frequency of 1 kHz. 6. Time is not explicitly considered (adaptive conductivity is
3. Local superficial-scalp layer conductivity increases instantly and instant). Capacitive effects/tissue permittivity are absent.

linearly with local Esg, starting at a threshold, up to a subject-
specific maximum (Eg). At low-current, this conductivity rep-

resents 1 kHz, while at high intensities this conductivity rep- 2.6. Computation and subject specific tissue parameterization
resents ~0.01—2 kHz (so assuming conductivity does not vary in

this range, which spans 1 kHz). At low-intensities, impedance is Computation was as previously described [18]. Modeled elec-
frequency dependent so 1 kHz is selected based on ECT device  trodes were incorporated into the segmentation. Volume meshes
static impedance performance, while at high intensities, were generated from the segmented data and exported to COMSOL
impedance is considered frequency independent over a relevant Multiphysics 5.5 (COMSOL Inc., MA, USA). The resulting mesh
range (see Introduction). comprised >8,000,000 tetrahedral elements (>12,000,000° of

4. Other tissues (skull, meninges/cerebrospinal fluid, gray/white freedom).
matter, air) have subject-independent, fixed isotropic conduc- The Laplace equation V. (6 V V) = 0 (V: scalar electric potential;

tivities. These conductivities can be considered at ~1 kHz, or v: gradient vector; o: conductivity) was solved and the boundary
simply to be frequency independent (across a relevant range) so conditions were used such that current in static models (2 p A) and
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Fig. 2. Thymatron device waveform during static and ECT (dynamic) impedance measurements across resistors. (A) Thymatron device static impedance measurement voltage
across a 2.200 k Q resistor that simulated human static impedance. The voltage divided by the resistance of the resistor gives the static impedance current waveform yielding the
time-series waveform (~+2 pA peak square wave; A2) and its frequency content (A3). (B) Thymatron device dynamic impedance measurement voltage across a 300 Q resistor to
simulate human dynamic impedance. The voltage divided by the resistance of the resistor gives the dynamic impedance current yielding the time series (~+900 mA; B2) and its
frequency content (B3). The frequency content of a simulated version of the idealized signal (Equation (2)) was calculated for different pulse widths (B4: 0.25 m s, B5: 0.5 m s; B6:

1ms).

Table 1
Parameters and corresponding values represented in
Equation (1).

Parameters Values

A 5%10-3

B 85

C 4.49%10*
D 0.032

dynamic models (900 mA; unless otherwise stated) is applied to
one of the electrode terminals, while the other electrode is
grounded. Superficial-scalp conductivity was expressed as a func-
tion of electric field (equation (1)). The finite element method
(FEM) model was implemented using COMSOL. To converge the
solution (Fig. 1C1), a linear system solver of conjugate gradients
was used with a relative tolerance of 1¥10~3 with a nonlinear sys-
tem solver using the Newton-Raphson method (<500 iterations).
This method is applied to millions of degrees of freedom iteratively.

An iterative approach (Fig. 1C2) was used to search for each
subject-specific deep-scalp layer conductivity (cps) and maximum
superficial-layer conductivity (o5g), such that model static imped-
ance and dynamic impedance matched each subject's clinical static
impedance and dynamic impedance values.

2.7. Statistical analysis

Normality of the Thymatron measurements, spectrum analyzer
impedances at 1 kHz and equivalent circuit impedances at 1 kHz
and the measured impedance of the same amplitude applied
groups (20 pA and 1 mA) were assessed with Lilliefors test. Paired
student's t-tests were performed between the static impedance
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measured before and after the three impedance spectrum mea-
surements, and between the average Thymatron measurement and
impedance at 1 kHz simulated from an equivalent circuit. Experi-
mental data of subjects measured by the Impedance Analyzer at
1 kHz was analyzed using one-way (impedance analyzer trial in-
dex) ANOVA. Statistical significance and high correlation were
considered when p < 0.05 and R?> > 0.7. A two-way ANOVA was
performed to analyze the effect of amplitude and current pulse
width effect on the impedance.

3. Results

3.1. Characterization of ECT device (Thymatron) output waveforms
using resistor loads

Modern ECT devices deliver current-controlled pulses, so that
the applied voltage is adjusted based on the encountered imped-
ance. Devices report the resulting “dynamic impedance” during the
passage of the ECT stimulus. Prior to stimulation, ECT devices report
a “static impedance” using low intensity high frequency test cur-
rents. While static impedance and dynamic impedance has long
been recognized as markers of individual differences and electrode
setup, their etiology and consequences are poorly determined [28],
including how they impact on seizure induction [29—32]. The
current output waveform of ECT devices during therapy is relatively
well characterized [33,34] whereas the (device specific) outputs
used to probe static impedance are not. Moreover, how ECT ma-
chines calculate reported static impedances and dynamic imped-
ances using the voltages needed to generate these currents should
be understood, including for modeling of ECT.

We measured the voltage output and analyzed frequency con-
tent of the Thymatron device waveform for each impedance case.
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The static impedance measurement voltage was measured across
2.200 kQ resistor to approximate human static impedance. Using
pure resistive loads, the Thymatron reported a static impedance
close to the resistance of the applied load, in this case reporting
2.167 kQ. The current waveform (Fig. 2 A2) generated (with a peak
amplitude of ~2 pA) for measuring static impedance and its fre-
quency content are shown (Fig. 2 A3). The waveform is approxi-
mately an 800 Hz biphasic square wave.

The voltage generated during ECT which is used to calculate
dynamic impedance was measured across a 300 Q resistor to
approximate human dynamic impedance. Under pure resistive
loads, the Thymatron reported a dynamic impedance that matched
the applied load, in this case reporting 300 Q. The current wave-
form (Fig. 2 B2) generated (with a peak amplitude of ~900 mA)
during ECT and its frequency content are shown (Fig. 2 B3) under an
ECT dose setting of 0.5 m s pulse width and 20 Hz. Note that pulse
polarity alternates. The frequency content is consistent with an
idealized alternating pulse-polarity waveform, as confirmed using
a synthetic waveform with matched pulse width and frequency
(Fig. 2 B5). The frequency content for a longer (1 m s; Fig. 2 B4) and
shorter (0.25 m s; Fig. 2 B5) synthetic waveforms is also shown.
Note that the first lobe of frequency content corresponding to the
inverse of the pulse width (e.g., <2 kHz for 0.5 m s pulse width).

The function of simulated ECT output is a periodic signal x(t)
and is described at Equation (2). It is a pulse function with ampli-
tude A and pulse width A with a period of T. The frequency content
can be described analytically by Equation (3) (|Cn|: The amplitude
spectrum of the periodic signal xr(t), n: number of terms, A:
amplitude T: period, A: pulse width). The analytical description
matches and explains the experimental/numerically calculated
results (Fig. 2) where the pulse repetition rate and pulse width set a
lower and upper bound, respectively, for the main lobe frequency
content.

A 0<t<A
—A,I§t<§+A

0, Otherwise

x7(t) = (Equation 2)

A

|Cn| :% sin<T> 1-(-1" (Equation 3)

3.2. Experiments on healthy subjects using ECT electrodes 1: Static
impedance and low-intensity impedance spectrum

In the first series of experiments on subjects, we aimed to
characterize the frequency dependence of ECT electrode impedance
(using an impedance analyzer), contrast these values with the static
impedance reported by an ECT device, and consider if the frequency
impedance spectrum is explained by a simple lumped parameter
circuit model.

The impedance characteristic of ECT electrodes (Thymapads)
under low currents was characterized on test subjects. An imped-
ance spectrum analyzer was used alongside the Thymatron (Fig. 3,
top left). Static impedance as reported by Thymatron device was
compared with each subject's skin impedance as measured by an
impedance analyzer device, including at 1 kHz (Fig. 3, orange,
yellow traces). The real and imaginary components of the imped-
ance analyzer data were also represented for each subject (Fig. 3,
blue traces). Three repeated tests were taken by the impedance
analyzer, preceding and followed by Thymatron static impedance
measurements (Table 2).
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Between repeated Thymatron measurements (before and after
the three impedance spectrum measurements), there were no
significant differences and a high correlation (p > 0.05, R? = 0.94).
There was no significant difference (F, 27y = 0.003, p > 0.05)
among the repeated measures using impedance analyzer data at
1 kHz for each subject. Average Thymatron reported static imped-
ance of subjects and the impedance analyzer 1 kHz data showed no
difference and high correlation (p > 0.05, R? = 0.99).

Impedance data from each subject (for >100 Hz frequency data
only) was to fit a Rp, Rs, Cp circuit model (see Methods; Table 2).
The impedance at 1 kHz of this circuit model was then calculated.
The circuit-derived 1 kHz impedance and Impedance Analyzer
measurement at 1 kHz was significantly different and highly
correlated (p = 5.017e 9%, R? = 0.99, eta-squared = 0.85). Any Rp,
Rs, Cp circuit is expected to have a purely real resistance of Rp + Rs
at low frequency, and to have purely real resistance of Rs (Fig. 3,
green traces) at high frequency. Whereas data collected by the
impedance analyzer shows an increase in both real and imaginary
impedance at low frequencies and so a deviation from a Rp, Rs, Cp
circuit. Therefore, in fitting the aforementioned Rp, Rs, Cp circuit
parameters for each subject, only data >100 Hz was considered.

We also considered if a single circuit Cp across subjects could
reasonably model the impedance response across all subjects (at
>100 Hz). However, we found that any single Cp value (e.g., the
median of the subject-specific Cp values) results in significant
changes in the predicted impedance at 1 kHz even changing the
rank order across subjects (see Discussion for rationale and
implication).

3.3. Experiments on healthy subjects using ECT electrodes 2:
Influence of waveform resulting impedance

In the second series of experiments, we wanted to rule out the
hypothesis that the difference between static impedance and dy-
namic impedance reflects difference in waveform (frequency con-
tent; Fig. 2) rather than differences in intensity. To address we
measured impedance while applying stimulation with the wave-
form of ECT (as used during measurement of dynamic impedance)
but low intensity (as used during measurement of static
impedance).

In a sample of healthy subjects (n = 10), we measured imped-
ance resulting from stimulation applied with alternating polarity
pulse trains of varying pulse widths (0.25 m s, 0.5 m's, 1 m s) at 2
different peak amplitudes (20 pA and 1 mA). For 20 pA, the means
of measured impedances for 0.25 ms, 0.5 m s, and 1 m s for 20 pA
are, in order: 3932 + 2287, 6400 + 3980 and 10342 + 6698. The
means of measured impedances for 0.25 m s, 0.5 m s, and 1 m s for
1 mA are, in order: 3570 + 1833, 5794 + 3031, 9208 + 5201. A two-
way ANOVA revealed that there was not a statistically significant
interaction between the effects of amplitude and current pulse
width (F(2, 54) = 3.17, p > 0.05). Simple main effects analysis
showed that amplitude did not have a statistically significant effect
on impedance (p > 0.05) while current pulse width has a statisti-
cally significant effect on impedance (p 0.0001, eta-
squared = 0.39).

The subject's measured impedances were always in kiloohm
range. However, when ECT is applied with a ~900 mA current, the
impedance (i.e., dynamic impedance) is measured at being be-
tween 200 and 400 Q range. This suggests the waveform (i.e., fre-
quency and pulse pattern) applied during the ECT stimulation does
not itself explain the drop in impedance, rather the current
amplitude matters.
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Fig. 3. Analysis of low-current impedance and reported static impedance using ECT electrodes. The subject's static impedance was measured using a Thymatron System IV ECT
device. Impedance was also measured using a frequency response (up to 1 kHz) analyzer device, with three repetitions (at 1 V, blue trace; 100 mV, orange trace; and then again at
1V, yellow trace). For each subject, impedance decreased with frequency and at 1 kHz (orange text) approximated the Thymatron reported static impedance. The impedance
frequency response was decomposed into real and imaginary constituents (blue traces). The impedance frequency response (only >100 Hz data) was used to parameterize a Rp, Rs,
Cp circuit (green circuit) to approximate each subject's impedance data. For each subject, the best fit circuit parameter values are indicated, along with the frequency response of the
circuit decomposed into real and imaginary constituents (green dashed trace) and the 1 kHz impedance of the circuit. While the Rp, Rs, Cp circuit impedance approaches a purely
real value (of Rs + Rp) at low frequency, the experimental impedance real and imaginary components increase over the frequency ranges tested. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 2

Subject impedance measurements at low currents with ECT electrodes. Table includes Thymatron (pre, post and average measurements) measurements, impedance
analyzer measurements at 1 kHz, and the lumped circuit values approximating impedance spectrum (>100 Hz data only) with the 1 kHz impedance of that circuit. EIS curve fit
element parameters are for Trial 1. Note, impedance analyzer Trial 1 is for 1 V (10—1000Hz), Trial 2 is 1 V (1-1000Hz), and 100 mV (10—1000 Hz). IMP: Impedance.

Subject ID Thymatron IMP (Q) IMP Analyzer 1 kHz (Q) Circuit Values IMP 1 kHz (Q)
Pre Post Avg. Trial 1 Trial 2 Trial 3 Rs (Q) Rp (kQ) Cp (nF)

201 1210 1290 1250 1253 1255 1242 522 9.89 175 1086
202 1690 1640 1665 1621 1630 1690 681 13.17 138 1386
203 1000 1140 1070 1102 1111 1089 506 5.52 210 960
204 1460 1520 1490 1485 1490 1467 508 13.44 138 1297
205 1670 1710 1690 1673 1716 1690 555 22.59 119 1475
206 1090 1090 1090 1033 1055 1040 449 424 219 906
207 850 770 810 808 808 804 372 2.84 294 810
208 1370 1370 1389 1389 1357 1376 557 6.70 160 1203
209 1020 900 939 939 904 980 432 2.57 263 806
210 940 830 885 838 818 862 374 3.97 277 723
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3.4. Development of updated individualized adaptive tissue models
of ECT

We previously developed the first MRI-derived head models of
tES incorporating current-dependent tissue properties and verified
these models across ECT clinical data sets [18]. Since these models
are adaptive, we can then simulate the tissue impedance changes
from low-current (static impedance) to high-current (dynamic
impedance) stimulation. This prior pipeline was (like other FEM
pipelines) agnostic to frequency; here, we update the pipeline to
center on 1 kHz under the rationale that this tracks ECT device
reported static impedance and dynamic impedance (see
Introduction).

The analysis was applied to data from four ECT patients' iden-
tifying maximum superficial scalp conductivity (o) and the deep
scalp conductivity (ops) that produced predicted static and dy-
namic impedance values corresponding to the patient's clinical
data. The resulting subject specific parameters were: Subject 21908,
Ogs = 0.16 S/m at Egg > 428 V/m, ops = 0.002 S/m; Subject 22615,
055 = 0.5 S/m at Egg > 1185 V/m, ops = 4.5¥10 % S/m; Subject
22035, o5 = 0.3 S/m at Egg > 740 V/m, ops = 0.008 S/m; Subject
21778, ogg = 0.4 S/m at Egg > 963 V/m, ops = 0.0012 S/m.

Stimulation with 2 pA (Fig. 4, static model) produced peak scalp
electric fields under and around electrode edges (<0.85 V/m) with
no increase in conductivity around the electrode perimeters. Sim-
ulations with 1 mA applied current, using this updated pipeline,
produces a predicted static impedance of 1822 Q for Subject 21908,
2443 Q for Subject 22615, 1865 Q for Subject 21778, 1522 Q for
Subject 22035 (not shown); these values are 4.8—8.1% less for 2 pA.
Stimulation with 900 mA (Fig. 4, dynamic model) produced high
electric fields across the scalp forehead with peaks around elec-
trodes (>4500 V/m) and an associated increase in scalp conduc-
tivity (0.15—0.5 S/m). The predicted brain current flow during ECT
results in peak electric fields >490 V/m. A detailed view of super-
ficial skin current and conductivity during ECT is represented for
Subject 22615 (Supplementary Fig. 1).

4. Discussion

How is the complex nature of tissue impedance during ECT
reconciled with the use of a quasi-static assumption (without
frequency-dependent tissue conductivity)? The approach devel-
oped here, as explained in the Introduction, is based on a quasi-
static pipeline using tissue conductivity only at 1 kHz. In ECT
modeling, our approach should either be made explicit (whether
conventional or adaptive ECT models) or an alternative
rationalized.

4.1. Measurements supporting 1 kHz based adaptive modeling
pipeline for ECT

Notwithstanding a potential decrease in ECT electrode imped-
ance over minutes [18], we collected data with sufficient expedi-
ency to minimize time effects (Table 2). We found no significant
difference in impedance spectrum between 1 V and 100 mV tests
(Table 2) or 20 pA and 1 mA, consistent with these test current
intensities below those starting to produce meaningful current-
dependent impedance changes. These intensifies are still above
those generated by the Thymatron static impedance circuit with 2
HA, corresponding to ~5 mV. Repeated measure with the imped-
ance analyzer and Thymatron static impedance provide assurance
that the test currents were not directly producing lasting skin
changes. Thus low-current measurements correspond to conditions
where electric fields in the skin are not sufficient to produce
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meaningful changes in conductivity — as reflected in the updated
adaptive ECT modeling pipeline (Equation (1), Fig. 4 static model).

While, a priori, one might expect the Thymatron to report an
impedance reflecting 800 Hz test current frequency (Fig. 2 A2), we
found the Thymatron reported a static impedance close to the
1 kHz value determined by the impedance analyzer. This can easily
be explained by idiosyncrasies of the Thymatron circuit/processing,
and also serves to emphasize that static impedance is a device-
specific measurement [18]. The Thymatron reliably reports as
‘static impedance’ the resistance of a resistor, but does not reliably
report the 1 kHz impedance of any arbitrary circuit (i.e., any RC
circuit). The coincidence of Thymatron reported static impedance
values with 1 kHz impedance is specific to the electrodes and
conditions tested. Nonetheless, this supports our proposition that
modeling head impedance at 1 kHz will predict reported Thyma-
tron static impedance. The pattern of current flow through the
brain at low-current or impedance at other frequencies are not
essential questions.

The ECT waveform consists of alternating phase pulses (Fig. 2
B2) [33—37]. Pulses have a broad frequency content, but for
0.25—1 m s pulse width, most of the power is 100 Hz (first har-
monic) to 4 kHz (first lobe at 0.25 m s). We cannot repeat imped-
ance analyzer measurements for ECT-level currents (~900 mA). If
impedance varied significantly with frequency (e.g., there was
significant capacitance component to impedance) then ECT voltage
output during therapy will be distorted compared to an ideal
square wave; but prior recordings suggest a square voltage output
[34]. Further unpublished data (James Long, personal communi-
cation, using Mecta device) shows 1) minimum reactive compo-
nent during ECT; 2) dynamic impedance matches resistance as
calculated by peak pulse voltage divided by applied current; and 3)
resistance changes <13% across sequential ECT pulses. Taken
together, these support our proposition that impedance is largely
resistive during ECT (within 100 Hz-4 kHz), so that tissue con-
ductivity can be considered frequency invariant under high cur-
rents. This, in turn, justifies modeling the ECT at a representative
frequency (e.g., 1 kHz). Specifically, in our pipeline a 1 kHz con-
ductivity is fixed for deep tissues, and 1 kHz conductivity increases
with local electric field for superficial skin (Equation (1)).

4.2. When and where frequency matters in transcranial electrical
stimulation

Typical tES models are frequency agnostic, ignoring the role of
frequency or assuming it is irrelevant. This is implicit in low-
intensity direct current [9], low-intensity AC [38—41], and prior
ECT models [35,42,43] including our initial development of adap-
tive ECT models [18]. Whereas models of tES conventionally focus
on brain electric fields, our concerns also include device-reported
impedances that may be especially sensitive to skin conditions.
Moreover, for ECT we address broad frequency content waveforms
(Fig. 2 A3, B3) that span very low (to 2 pA) to very high
(800—900 mA) intensity, so amplifying concerned about frequency
and intensity-dependent tissue conductivity.

The impact of current intensity and frequency on skin imped-
ance is not in doubt [17,44], including the use or extra-low (tens of
uA) current to measure “impedance” before tES [45]. For 0.25—1 mA
intensities and 0.1-150 Hz tES, experiments suggest tissue can be
approximated as fixed conductivity [19,46—48]. Still, measure-
ments of intra-cranial electric fields show an incremental impact of
frequency, with ~11% reduction in electric field from 1 Hz to
~100 Hz [19,46,49], consistent with increasing skin conductivity.
When intensity is increased from 2 to 4 mA, moderate increases in
skin conductivity can explain reductions in impedance with small
reduction in brain electric fields [50]. The importance in tES on
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Fig. 4. Adaptive (1 kHz based) ECT models for four ECT subjects. Dynamic FEM models simulated current flow across four subjects who have received ECT (Subject IDs: 21778,
21908.22035, 22615). (First Column) Model anatomy was based on subject anatomical MRI. Static impedance and dynamic impedance values were recorded for each subject (gray
box). Each subject model was assigned a specific deep scalp conductivity (ops) and a maximum superficial scalp conductivity (og5) as indicated, such that adaptive FEM simulation
predicted corresponding static impedance (based on 2 pA applied current) and dynamic impedance (based on 900 mA applied current) as indicated. (Second and Third Column)
Results from the static impedance (2 pA current) simulation showed resulting superficial scalp conductivity and scalp electric field. (Third, Fourth, Fifth Column) Results from the
dynamic impedance (900 mA current) simulation showed resulting superficial scalp conductivity, scalp electric field, and brain electric field. We emphasize in these novel adaptive
simulations that brain current flow was determined by tissue conductivity and superficial scalp conductivity was simultaneously determined by local electric field. Even for the 2 pA
(static) model local changes in scalp conductivity are predicted. For the 900 mA (dynamic) model, the saturation of the transfer function between superficial scalp electric field and
conductivity resulted in a more diffuse saturation of scalp conductivity (front of head) compared to scalp electric field (around electrodes).

complex tissue conductivity may depend on cases where higher The sources of impedance include the electrode-interface
model precision is required and/or applications using higher in- (boundary between the conductor and hydrogel electrolyte),
tensity/frequency waveforms (e.g., temporal interference stimula- remainder of electrode assembly [54] components, the electrode-
tion; [51-53]). skin interface, skin, and deep tissues. The contribution of the
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electrode-assembly components and electrode-interface can be
shown to be negligible by measuring two electrodes directly con-
nected (~50 Q irrespective of intensity). The skin-electrode inter-
face is not an electrode interface, but rather a continuous boundary
between two electrolyte conductors (as is the interface between
tissues). So, one cannot attribute to the skin-electrode interface
properties of electrodes [55]. Could the skin-electrode interface
account for the intensity and frequency (Fig. 3) dependent
impedance? Electrode design [56—58] and (ECT) preparation [18]
will impact impedance in so far as they govern current flow
through the skin-electrode boundary. But we are not aware of data
attributing any (significant) complex impedance to a “skin-elec-
trode interface” (except fully dry electrodes that are not suitable for
stimulation). Rather, decades of skin impedance measurement have
shown frequency and intensity dependence inside specific skin
layers and micro-structure [59,60]; i.e., layers that do not interface
with the electrode.

4.3. Lumped parameter models on skin impedance

Copious literature models complex skin impedance with lum-
ped parameter circuits [61—67]. Lumped parameter circuits can
represent complex impedance in a few skin segments, but cannot
account for spatial dispersion at the skin or deeper (brain) current
flow patterns. We first developed adaptive FEM models of current
flow [18] to account for current-dependent tissue conductivity,
which were frequency agnostic. To model frequency, as an alter-
native approach to the single-frequency FEM described above, we
considered using FEM to predict total resistance (e.g., at DC) and
then integrate this prediction into a lumped parameter model with
additional capacitive elements, to predict frequency-sensitivity.
After substantial effort, this FEM plus lumped-parameter
approach was not successful but did yield insights on the nature
of electrode/body impedance.

Lumped parameter models of skin impedance have varied
complexity [64,68]. We considered the most basic Rs, Rp, Cp, circuit
(Fig. 3, top right). Assuming the FEM models predict DC impedance,
then Ry and R, might be derived from the subject-specific FEM
model, but C, cannot. However, if a subject-independent value of C,
can be applied, the resulting lumped parameter model can predict
frequency-specific impedance. Ultimately, the intensity depen-
dence of Rs or Ry, could also be modeled. However, while experi-
mental impedance could be approximated with this circuit (at
frequencies >100 Hz; Fig. 3 green trace), this was only reliable with
subject-specific Cp values (Table 2).

The circular arc of real vs imaginary impedance (Fig. 3, green
lines) is known to apply to skin [59]; the deviation we observed at
frequencies <100 Hz (Fig. 3, blue lines) may reflect the electrode-
skin interface. To the extent static impedance is intended to pre-
dict dynamic impedance, and if this deviation is not relevant to
impedance during ECT, it is rational ECT devices report static
impedance approximating >100 Hz (e.g., 1 kHz) impedance.

4.4. Biophysical basis and the quasi-static pipeline

If one does not ignore complex impedance, then without the
1 kHz simplification developed here or the ability to adapt lumped
parameter models, another alternative is to model the underlying
biophysics. For tES, this is computationally intractable and indefi-
nitely parameterized when one considers the skin is composed of
multiple layers, each with distinct non-linear impedance (both
resistance and capacitance are not linear; [17,62,65]). Moreover,
microscopic appendages such a sweat glands and blood-vessels
transverse skin layers. Even assuming fixed conductivity, these
layers and appendages are themselves complex to model in a small
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patch a skin [20,69], and for tES the entire scalp would need to be
represented.

This biophysical approach introduces a level of microscopic
nuance (e.g., voltages changes over um) that is not relevant for
explanations on the scale of phenomena detectable and impactful
to tES (e.g., voltage changes over mm, overall head impedance). Our
goal was to adapt quasi-static tES FEM modeling for ECT, account-
ing for intensity- and frequency-dependent tissue conductivity. Our
simplifying assumptions are explicit (see Methods). This approach
remains state-of-the-art and better than simply ignoring the un-
derlying issues.

4.5. Conclusion: How to model ECT

We summarize five approaches to FEM (anatomically precise)
modeling current flow during ECT.

1) Under the quasi-static assumption with fixed resistivity, which
needs to be reconciled with intensity dependent (as evidenced
in difference in static vs dynamic impedance, and impacting
individual difference [18]) and frequency dependent impedance
(shown here).

2) Hybrid quasi-static FEM with a hybrid lumped-parameter
model [5], which cannot represent regional tissue impedance
or account (in our approach) for individual differences.

3) A biophysical model, which demands extensive micro-scopic
parametrization and is computational intractable except for
small skin patches [20,69].

4) Solving the inhomogeneous electromagnetic wave (Maxwell's)
equations across all tissues [1,4] with varied degrees of simpli-
fication (e.g., no propagation or induction). The simplifications
of impedance insensitivity to intensity and to frequency (which
allows the quasi-static assumption) are, as explained here, un-
justified for ECT.

5) The approach developed and experimentally validated here,
using a quasi-static pipeline at a representative (device and
waveform specific) frequency, which further allows subject-
specific models referencing static and dynamic impedance.
This approach should not be confused with invoking the quasi-
static assumption, but it does rescue prior ECT models to be
rationalized under a quasi-static pipeline.
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